Мы можем узнать еще очень многое, сопоставив показатель ВВП на душу населения с показателем сложности экономики. Одним из непосредственных уроков является то, что низкая заработная плата сама по себе не обеспечивает экономического преимущества. Экономическое преимущество существует только для стран, уровень зарплат в которых низок по сравнению со сложностью их экономики.
Рассмотрим перенос производства из Соединенных Штатов в Китай. На протяжении последних десятилетий американские СМИ упорно объясняли этот перенос низкими зарплатами. Тем не менее существует ряд стран с многочисленным населением, где заработная плата значительно ниже, например в Индонезии проживает 200 миллионов человек, в Эфиопии – 80 миллионов, а в Нигерии – более 100 миллионов человек. В Нигерии и Индонезии ВВП на душу населения примерно в два раза меньше, чем в Китае, а в Эфиопии – примерно в десять раз меньше, чем в Китае. Причина, по которой производство не было перенесено в эти страны, заключается в том, что у этих стран нет производственной способности Китая – способности, воплощенной в китайских городах, фирмах и жителях. Не официальные доказательства этой высокой способности можно получить, поговорив с кем-нибудь из производителей больших партий продукции в китайском производственном центре, например в Шэньчжэне. Иностранцы, производящие мобильные телефоны и электронику, скажут вам, что они выбрали Шэньчжэнь потому, что это лучшее место для производства продукции. В Шэньчжэне есть необходимый объем знаний, требующихся для производства разнообразных продуктов, и фирмы производят свои продукты там, прежде всего, потому, что они хотят использовать эти мощности, а не просто потому, что там низкая заработная плата.[167]
* * *
Мы начали эту главу с описания хорошо известных связей между экономическим ростом и факторами производства: между физическим капиталом и человеческим капиталом, а также между человеческим капиталом и социальным капиталом. Эти факторы помогли нам в значительной степени объяснить различия в показателях экономического роста среди разных стран, однако мы также увидели их существенные технические и концептуальные ограничения. Одним из недостатков агрегированных факторов является их неспособность учесть информацию об идентичности составляющих экономику элементов. Фокусируясь на измерении основного капитала вместо разнообразия, эти факторы складывают яблоки с апельсинами, печи с холодильниками и графических дизайнеров с инженерами-электриками. Это ограничение, как известно, чревато определенными проблемами, – Леонтьев и другие ученые предупреждали об опасностях агрегации. Но на практике это ограничение трудно было преодолеть.
Однако, используя данные о продуктах, экспортируемых каждой страной, можно создать критерии для оценки экономики, учитывающие идентичность элементов, из которых она состоит. Отчасти это возможно благодаря тому, что данные, связывающие страны с экспортируемыми ими продуктами, принимают форму сети. В сети идентичность элемента выражается не только во внутренних характеристиках (которые могли бы определить действительную идентичность продукта или страны), но и в схемах соединения, которые для конкретной страны включают ее первых соседей (количество продуктов, с которыми она связана), вторых соседей (вездесущность производимых страной продуктов), третьих соседей (среднее количество стран, связанных с продуктами, с которыми связана страна) и так далее.
Конечно, это не единственный способ измерения сложности экономики. Одни и те же данные можно использовать различными способами. Кроме того, мы можем использовать другие данные, например такие, которые соединяют страны с отраслями промышленности и с категориями профессий, чтобы создать показатели, основанные на местоположении и профессиях, а не на отраслях и местоположении. Идея в данном случае сводится не к тому, что экономическая сложность является единственным или наилучшим показателем, а к тому, что сложность экономики может быть измерена путем разработки сетевых методов, учитывающих идентичность элементов, из которых состоит экономика.
Польза от применения этого нового показателя очень велика, поскольку он позволяет спрогнозировать совокупный объем производства, учитывая не только информацию о таких ранее описанных факторах, как институты, социальный капитал и человеческий капитал, но и информацию о знаниях и ноу-хау, которые экономика накапливает на коллективном уровне.
В следующей главе мы отвлечемся от национальных экономик, факторов производства и показателей ВВП и с биологической и исторической точки зрения сравним способность групп людей «упаковывать» и «распаковывать» знания и информацию с аналогичными биологическими механизмами. Это поможет нам исследовать механизмы, обеспечивающие способность системы наращивать объем информации.
Глава 11
Слияние знаний, ноу-хау и информации
До сих пор мы описывали экономику, основываясь на ноу-хау, знаниях, способах их практического применения и механизмах, необходимых для накопления и распространения знаний, ноу-хау и способов их практического применения. Такое описание экономики сосредоточено на упаковке и распаковке ноу-хау и информации, на том, как наша способность упаковывать способы практического применения знаний и ноу-хау в продукты увеличивает наши возможности, а также на том, как квантование ноу-хау, обусловленное ограниченной способностью фирм и людей накапливать ноу-хау, ограничивает его распространение.
Мы отметили, что информация и ноу-хау представляют собой различные понятия. Информация относится к порядку, воплощенному в кодифицированных последовательностях, присутствующих, например, в музыке или ДНК, в то время как знание и ноу-хау относятся к способности системы обрабатывать информацию. Примеры ноу-хау можно найти в биологических сетях, осуществляющих фотосинтез – процесс, посредством которого растение производит углерод из воздуха. Более причудливым примером являются человеческие сети, осуществляющие «автосинтез» – процесс, посредством которого группы людей производят автомобили из минералов.
Ноу-хау и информация различны, но тесно связаны. Способность системы упаковывать ноу-хау во многом зависит от гибкости, с которой она может использовать информацию для реконструкции динамических сетей, необходимых для накопления ноу-хау. Прекрасным примером в данном случае является семя. Это пакет, содержащий как ноу-хау, так и информацию, необходимую для создания растения, например дерева. Развитие дерева является не чем иным, как величественным процессом распаковки ноу-хау, управляемым генетической информацией. Семя, превращающееся в дерево, распаковывает ноу-хау, необходимое для выполнения фотосинтеза, построения структур, которые будут транспортировать питательные вещества и воду от земли к листьям, а также для защиты от вредителей. Семя, превращающееся в дерево, представляет собой пример того, как ноу-хау и информация распаковывается в структуру, которая является более сложной по сравнению с той, которая ее породила, – дерево имеет возможность выполнять функции, не свойственные семени.