Эта задача может показаться замкнутым кругом, поскольку мы используем разнообразие стран для улучшения способа измерения продуктов и в то же время используем степень вездесущности продуктов для улучшения способа измерения стран. Тем не менее этот замкнутый круг подразумевает хорошо определенный математический предел. Результатом этого процесса является мера, которую я разработал в 2008 году и назвал экономической сложностью. Как мы увидим, волшебство этой меры заключается в том, что она очень точно предсказывает экономический рост.[165]
Чтобы увидеть, как работает мера экономической сложности, давайте рассмотрим пример. На рис. 13а представлены данные о ВВП страны на душу населения и о разнообразии, выраженном в количестве экспортируемых ею продуктов. Рис. 13б представляет собой более сложный вариант, учитывающий ВВП на душу населения и меру, включающую среднюю степень разнообразия стран, которые экспортируют продукты, экспортируемые странами, которые экспортируют то, что экспортирует экономика. Это уже приближается к мере экономической сложности и заставляет поломать голову, поскольку предыдущая фраза находится на пределе того, что можно выразить человеческим языком, однако, как мы увидим далее, по сравнению с более простыми методами измерения разнообразия, этот метод имеет некоторые явные преимущества.
На рис. 13а и 13б я выделил три страны: Сингапур, Чили и Пакистан. Я выбрал эти три страны исходя из того, что они экспортировали одинаковое количество продуктов в 2000 году, и, следовательно, мы не можем различить их, используя только количество экспортированных продуктов (то есть разнообразие). Поскольку Сингапур, Чили и Пакистан значительно отличаются по ВВП на душу населения, но не по количеству экспортируемых продуктов, они выровнены по вертикали на рис. 13а. Это выравнивание исчезает, как только мы добавляем информацию о степени вездесущности продуктов, экспортируемых этими странами, а также о разнообразии стран, которые экспортируют эти продукты. На рис. 13б Сингапур находится справа от Чили, а Чили – справа от Пакистана. Этот сдвиг говорит нам о том, что включение информации об идентичности экспортируемых страной продуктов (через вездесущность продуктов и разнообразие стран, которые их экспортируют) помогает нам определить экономику Сингапура в качестве более сложной по сравнению с экономикой Чили, а экономику Чили – в качестве более сложной по сравнению с экономикой Пакистана.
Тем не менее корреляция между этой мерой экономической сложности и ВВП на душу населения – это не самое удивительное. Что делает эту меру экономической сложности важной, так это ее способность объяснять изменения показателей ВВП на душу населения за длительный период времени.
Рис. 13а. ВВП на душу населения против разнообразия экспорта (данные за 2000 год)
Рис. 13б. ВВП на душу населения против экономической сложности (данные за 2000 год)
В качестве иллюстрации способности показателя экономической сложности объяснять экономический рост рассмотрим рис. 14. Здесь показаны значения сложности экономик (рассчитанной по математической формуле) и ВВП на душу населения за 1985 год. На этом графике страна может занять одно из трех возможных положений. Страны, которые находятся выше линии, имеют ВВП на душу населения, превышающий значение, которое можно было бы ожидать при соответствующей сложности экономики. Страны, которые расположены под линией, имеют ВВП на душу населения, значение которого ниже ожидаемого при данной сложности экономики. Наконец, страны, расположенные на линии – это страны с ВВП на душу населения, точно соответствующим ожидаемому значению при существующей сложности экономики.
Рис. 14. Экономическая сложность в сравнении с ВВП на душу населения (данные за 1985 год)
Как же эти разрывы развиваются во времени? По большей части, страны, которые находятся под линией, например Индия и Китай, как правило, развиваются более быстрыми темпами по сравнению со странами, находящимися на линии или над ней (рис. 15). Это означает, что в долгосрочной перспективе доход стран имеет тенденцию следовать за информацией, отраженной показателем экономической сложности. Короче говоря, доходы стран можно предсказать, исходя из сложности их экономик. Чтобы заработать, необходимо производить.
Однако в каких временных масштабах показатель экономической сложности эффективен в плане прогнозирования экономического роста? Интересно отметить, что показатель экономической сложности не позволяет точно спрогнозировать экономический рост в краткосрочной перспективе, то есть менее чем на пять лет вперед. В такие короткие периоды, как правило, наблюдается много флуктуаций, вызванных кризисами, изменениями цен на товары, а также до некоторой степени вариациями обменных курсов. При рассмотрении более длительных периодов (от десяти до пятнадцати лет) показатель экономической сложности очень эффективен в плане предсказания экономического роста, это означает, что данный показатель отражает информацию о способности экономики генерировать доход в долгосрочной перспективе.
Рис. 15. Сравнение показателя роста, предсказанного на основе несоответствия между показателем экономической сложности и ВВП на душу населения в 1985 году, с показателями роста, наблюдаемыми в период с 1985 по 2000 год
Один из способов интерпретации динамики экономического роста и экономической сложности заключается в том, что производимые и экспортируемые страной продукты определяют равновесный уровень дохода. Это означает, что показатель среднего дохода страны должен медленно приближаться к показателю дохода других стран с аналогичным уровнем экономической сложности. Другой способ интерпретации этой динамики заключается в том, что каждая отрасль промышленности и профессия тяготеет к свойственным им уровням дохода. Например, опытные разработчики программного обеспечения получают хорошую зарплату, независимо от того, где они находятся, а сборщики фруктов получают маленькую зарплату, независимо от того, где они работают. Это не значит, что уровень заработной платы для каждой профессии и отрасли одинаков во всех странах, поскольку очевидно, что это не так. Скорее международные различия в уровнях зарплат подтягивают зарплаты работающих в одних и тех же отраслях к аналогичному значению, даже если это притяжение не очень сильно и действует медленно.[166]