Топ за месяц!🔥
Книжки » Книги » Историческая проза » Значимые фигуры - Йен Стюарт 📕 - Книга онлайн бесплатно

Книга Значимые фигуры - Йен Стюарт

309
0
На нашем литературном портале можно бесплатно читать книгу Значимые фигуры - Йен Стюарт полная версия. Жанр: Книги / Историческая проза. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 81 82 83 ... 87
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 18 страниц из 87

Разумеется, поверхности – особый случай, но Тёрстон заинтересовался: не происходит ли чего-то подобного и с трехмерными многообразиями? Поразительная геометрическая интуиция помогла ему быстро понять, что ситуация не может быть настолько простой. Некоторые трехмерные многообразия, такие как плоский тор, являются Евклидовыми. Другие, такие как 3-сфера, – эллиптическими. Есть и гиперболические. Но большинство трехмерных многообразий не относится ни к первым, ни ко вторым, ни к третьим. Тёрстон, не утратив присутствия духа, попытался разобраться почему и обнаружил две причины. Во-первых, для трехмерных многообразий существует восемь разумных геометрий. Одна из них, к примеру, аналогична цилиндру: плоская в одних направлениях и положительно искривленная в других. Второе препятствие более серьезно: многие 3-многообразия до сих пор не изучены. Однако работающий метод, по всей видимости, представлял собой своего рода эффект мозаики. Любое 3-многообразие, судя по всему, строится из кусочков, каждый из которых характеризуется естественной геометрией одного из уже упомянутых восьми возможных типов. Более того, кусочки должны быть не какими попало: их можно выбрать так, чтобы они стыковались между собой строго определенным образом. Эти идеи заставили Тёрстона в 1982 г. озвучить свою гипотезу геометризации: любое трехмерное пространство может быть разрезано единственным, по существу, образом на куски, каждый из которых обладает естественной геометрической структурой, задаваемой одной из восьми его геометрий. Гипотеза Пуанкаре для 3-многообразий – простое следствие из этой гипотезы. Но дальше дело застопорилось. Математический институт Клэя назвал гипотезу Пуанкаре одной из задач, за решение которых была объявлена Премия тысячелетия: за ее доказательство полагался приз в $1 млн.

В 2002 г. Перельман разместил на сайте под названием arXiv препринт статьи, посвященной теме, известной как поток Риччи. Эта концепция связана с общей теорией относительности, в которой тяготение представляет собой результат кривизны пространства-времени. Ранее Ричард Хэмилтон уже высказывал мысль о том, что поток Риччи потенциально может дать простое доказательство гипотезы Пуанкаре. Идея состояла в том, чтобы начать с гипотетического трехмерного многообразия, такого, что любая замкнутая кривая в нем сжимается в точку. Такое многообразие можно интерпретировать как искривленное трехмерное пространство в Евклидовом смысле – впервые эта идея была высказана в хабилитационной диссертации Римана (глава 15).

А теперь самое хитрое: попытайтесь перераспределить кривизну так, чтобы сделать ее более равномерной.

Представьте, что вы пытаетесь погладить рубашку. Если вы не позаботитесь о том, чтобы поровнее разложить ее на гладильной доске, на рубашке возникнет множество неровностей и складок. Это области высокой кривизны. В остальных местах ткань рубашки лежит на плоскости ровно, то есть кривизна нулевая. Вы можете попытаться разгладить неровности утюгом, но ткань плохо сжимается и растягивается, так что неровности будут либо сдвигаться на другое место, либо заглаживаться, образуя морщины. Более простой и эффективный метод, не позволяющий неровностям сдвигаться или появляться вновь, состоит в том, чтобы взять рубашку за края и растянуть. Тогда естественная упругость ткани разгладит неровности. Поток Риччи делает нечто подобное для 3-многообразия. Он перераспределяет кривизну из областей, где она высока, в области с более низкой кривизной, как будто пространство пытается сгладить и выровнять свою кривизну. Если все работает как надо, кривизна продолжает перетекать с места на место, пока не станет одинаковой всюду. Возможно, результат окажется плоским, возможно, нет, но так или иначе его кривизна в любой точке должна быть одинаковой.

Гамильтон показал, что эта идея работает в двух измерениях: бугристая поверхность, на которой любая замкнутая кривая сжимается в точку, может быть разглажена при помощи своего потока Риччи до состояния, когда она будет обладать постоянной положительной кривизной – то есть превратится в сферу. Но в трех измерениях существуют препятствия, и поток может застрять там, где кусочки многообразия сходятся и образуют морщины. Перельман нашел способ обойти эту проблему – для этого он предлагал, по существу, отрезать проблемный кусок рубашки, отгладить его отдельно, а затем пришить обратно. В упомянутой статье и последовавшем дополнении утверждалось, что этот метод доказывает и гипотезу Пуанкаре, и гипотезу Тёрстона о геометризации.

Как правило, заявления о найденном решении какой-то известной крупной задачи математическое сообщество поначалу встречает скептически. Большинству математиков случалось находить собственные многообещающие доказательства для какой-то сложной интересующей их задачи – только для того, чтобы обнаружить в нем небольшую незамеченную ошибку. Но в данном случае с самого начала было общее ощущение того, что Перельману, возможно, действительно удалось это сделать. Предложенный им метод доказательства гипотезы Пуанкаре выглядел правдоподобно; гипотеза о геометризации казалась, пожалуй, более проблемной. Однако общего мнения недостаточно: доказательство должно быть проверено. К тому же текст на сайте arXiv – а ничего другого и не было – оставлял множество пробелов, которые читатели должны были заполнять сами; подразумевалось, что эти шаги очевидны. На самом же деле на заполнение этих пробелов и проверку логики доказательства ушло несколько лет.

Перельман необычайно талантлив, и то, что казалось очевидным ему, было далеко не очевидным для математиков, которые пытались проверить его доказательство. Справедливости ради заметим, что они размышляли об этой задаче не так, как он, и далеко не так долго, как он, что ставило их в заведомо невыгодное положение. Кроме того, сам Перельман вел затворнический образ жизни; поскольку время шло, а никто не спешил объявить его работу прорывом и эпохальным событием – каким она в действительности и являлась, – он испытывал досаду и разочарование. К тому моменту, когда его доказательство было принято, он полностью оставил математику[34]. Перельман отказался от приза в миллион долларов, который был ему предложен, несмотря на то что условий конкурса не выполнил – его доказательство не было опубликовано в уважаемом журнале. Он отказался также от Филдсовской медали, которую обычно считают математическим эквивалентом Нобелевской премии, хотя сумма денежного вознаграждения при ней намного меньше. Через некоторое время Институт Клэя организовал на эти деньги краткосрочную стипендию для выдающихся молодых математиков в Институте Анри Пуанкаре в Париже.

* * *

Сегодня многие математики пользуются компьютерами не только для переписки по электронной почте и путешествий по сети, даже не только для больших численных вычислений, но как инструментом, который помогает им исследовать различные задачи почти экспериментальным методом. В самом деле, время от времени появляются доказательства, полученные при помощи компьютеров, часто в связи с важными задачами, не поддавшимися пока традиционным методам атаки при помощи ручки, бумаги и человеческого разума. Столь спокойное отношение к компьютерам стало распространенным относительно недавно; дело не в том, что математики все такие ретрограды и сопротивляются внедрению новых технологий, но прежде возможности компьютеров были слишком ограниченными как по скорости, так и по объему памяти. Серьезная математическая задача может оказаться неподъемной даже для самого быстрого суперкомпьютера; в одном недавнем исследовании результат компьютерного расчета, если бы его полностью распечатали, оказался бы размером с Манхэттен.

Ознакомительная версия. Доступно 18 страниц из 87

1 ... 81 82 83 ... 87
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Значимые фигуры - Йен Стюарт», после закрытия браузера.

Комментарии и отзывы (0) к книге "Значимые фигуры - Йен Стюарт"