Ознакомительная версия. Доступно 11 страниц из 55
class="p1">8. Catania K. C. (2009). Tentacled snakes turn C-starts to their advantage and predict future prey behavior. Proceedings of the National Academy of Sciences 106: 11183–11187.
9. Catania K. C. (2010). Born knowing: Tentacled snakes innately predict future prey behavior. PLOS One 5 (6): e10953.
10. Dawkins R. (1982). The extended phenotype. Oxford: Oxford University Press.
ГЛАВА 4. ТАЙНА ЗАКЛИНАНИЯ ЧЕРВЕЙ
1. Kuralt C. (1985). On the road with Charles Kuralt. New York: Putnam.
2. Tobin T. C. (2002). Gruntin’ and gathering. St. Petersburg Times (April 14).
3. По данным Федерального лесного управления США, в 2018 году действовало десять лицензий.
4. Brower K. (1999). Can of worms. The Atlantic Monthly 283: 91–100.
5. Darwin C. (1881, reprint 2002). The formation of vegetable mould through the action of worms with observations on their habits. McLean, VA: IndyPublish.com.
6. Dawkins R. (1982). The extended phenotype. Oxford: Oxford University Press.
7. Tinbergen N. (1960). The herring gull’s world. New York: Basic Books.
8. Kaufmann J. H. (1986). Stomping for earthworms by wood turtles, Clemmys insculpta: A newly discovered foraging technique. Copeia 1986: 1001–1004.
9. Catania K. C. (2008). Worm grunting, fiddling, and charming: Humans unknowingly mimic a predator to harvest bait. PLOS One 3: e3472.
10. Conner W. E., and Corcoran A. J. (2012). Sound strategies: The 65-million-year-old battle between bats and insects. Annual Review of Entomology 57: 21–39.
11. Catania K. C. (2013). Stereo and serial sniffing guide navigation to an odour source in a mammal. Nature Communications 4: 1441, doi: 10.1038/ncomms2444.
12. Lyster I. H. J. (1972). Mole kills herring gull. Scottish Birds 7: 207.
ГЛАВА 5. КРОШЕЧНЫЙ ТИРАННОЗАВР
1. Jackson H. H. T., and Lepage J. (1961). Mammals of Wisconsin. Madison: University of Wisconsin Press, p. 52.
2. Brooks F. E. (1908). Notes on the habits of mice, moles and shrews. Bulletin 113, West Virginia University Agricultural Experiment Station, pp. 96–115.
3. Lázaro J., Hertel M., Sherwood C. C., Muturi M., and Dechmann D. K. (2018). Profound seasonal changes in brain size and architecture in the common shrew. Brain Structure and Function 223 (6): 2823–2840.
4. Crowcroft W. P. (1957). The life of the shrew. London: M. Reinhardt.
5. Catania K. C., Hare J., and Campbell K. (2008). Water shrews detect movement, shape, and smell to find prey underwater. Proceedings of the National Academy of Sciences 105: 571–576.
6. Roosevelt T. (1893). The wilderness hunter: An account of the big game of the United States and its chase with horse, hound, and rifle (vol. 2). New York: GP Putnam.
7. Leitch D. B., Sarko D. K., and Catania K. C. (2014). Brain mass and cranial nerve size in shrews and moles. Scientific Reports 4: 6241.
8. Dehnhardt G., Mauck B., Hanke W., and Bleckmann H. (2001). Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293 (5527): 102–104.
9. Edwards D. H., Heitler W. J., and Krasne F. B. (1999). Fifty years of a command neuron: The neurobiology of escape behavior in the crayfish. Trends in Neurosciences 22 (4): 153–161.
10. Furshpan E. J., and Potter D. D. (1959). Transmission at the giant motor synapses of the crayfish. Journal of Physiology 145 (2): 289–325.
11. Kielan-Jaworowska Z., Cifelli R. L., and Lou Z. X. (2004). Mammals from the age of dinosaurs: Origins, evolution, and structure. New York: Columbia University Press.
12. Catania K. C., Lyon D. C., Mock O. B., and Kaas J. H. (1999). Cortical organization in shrews: Evidence from five species. Journal of Comparative Neurology 410: 55–72.
13. Leitch D. B., Gauthier D., Sarko, and Catania K. C. (2011). Chemoarchitecture of layer 4 isocortex in the American water shrew (S. palustris). Brain, Behavior and Evolution 78: 261–271.
14. Nudo R. J., and Masterton R. B. (1990). Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract. Journal of Comparative Neurology 296: 559–583.
15. Kaas J. H. (2013). The evolution of brains from early mammals to humans. Wiley Interdisciplinary Reviews: Cognitive Science 4 (1): 33–45.
16. Rowe T. B., Macrini T. E., and Luo Z. X. (2011). Fossil evidence on origin of the mammalian brain. Science 332 (6032): 955–957.
17. Wang S. S. H. (2008). Functional tradeoffs in axonal scaling: Implications for brain function. Brain, Behavior and Evolution 72 (2): 159–167.
18. Crowcroft P. (1954). The daily cycle of activity in British shrews. Proceedings of the Zoological Society of London 123 (4): 715–730.
19. Merritt J. F., and Vessey S. H. (2000). Shrews – Small insectivores with polyphasic patterns. In Activity patterns in small mammals. Berlin: Springer, pp. 235–251.
ГЛАВА 6. 500 ВОЛЬТ – И Я ВЕСЬ ТВОЙ
1. Finger S., and Piccolino M. (2011). The shocking history of electric fishes: From ancient epochs to the birth of modern neurophysiology. Oxford: Oxford University Press.
2. Wulf A. (2015). The invention of nature: Alexander von Humboldt’s new world. New York: Knopf.
3. von Humboldt A. (1807). Jagd und kampf der electrischen aale mit pferden. Aus den reiseberichten des Hrn. Freiherrn Alexander v. Humboldt. Annalen der Physik 25: 34–43.
4. Faraday M. (1832). Experimental researches in electricity. Philosophical Transactions of the Royal Society of London 122: 125–162.
5. Volta A. (1800). On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPRS. Philosophical Transactions of the Royal Society of London 90: 403–431.
6. Changeux J. P., Kasai M., and Lee C. Y. (1970). Use of a snake venom toxin to characterize the cholinergic receptor protein. Proceedings of the National Academy of Sciences 67 (3): 1241–1247.
7. Schroeder T. B., Guha A., Lamoureux A., VanRenterghem G., Sept D., Shtein M., Yang J., and Mayer M. (2017). An electric-eel-inspired soft power source from stacked hydrogels. Nature 552 (7684): 214.
8. Moller P. (1995). Electric fishes: History and behavior (vol. 17). London: Chapman & Hall.
9. Catania K. (2014). The shocking predatory strike of the electric eel. Science 346: 1231–1234.
10. Bauer R. (1979). Electric organ discharge (EOD) and prey capture behaviour in the electric eel, Electrophorus electricus. Behavioral Ecology and Sociobiology 4 (4): 311–319.
11. Suga N., and Shimozawa T. (1974). Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science 183 (4130): 1211–1213.
12. Norman L. J., and
Ознакомительная версия. Доступно 11 страниц из 55