Топ за месяц!🔥
Книжки » Книги » Психология » Лейбниц. Анализ бесконечно малых - Jose Munoz Santonja 📕 - Книга онлайн бесплатно

Книга Лейбниц. Анализ бесконечно малых - Jose Munoz Santonja

189
0
На нашем литературном портале можно бесплатно читать книгу Лейбниц. Анализ бесконечно малых - Jose Munoz Santonja полная версия. Жанр: Книги / Психология. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 ... 38
Перейти на страницу:

На основе геометрического ряда

∑rn

n≥1

в Средние века исследовали ряды степеней, в которых менялись местами основание и показатель степени, например:

∑nr

n≥1

Вскоре было замечено: если показатель степени r положительный, а n — целое число, сумма превращается в бесконечность. Когда показатель степени r отрицательный, получаются степени дробей, меньших единицы, то есть сумма

∑(1/n)r, где r больше единицы.

n≥1

Французский математик Николай Орезмский (1323— 1382) получил много результатов, исследуя ряды, и первым доказал, что гармонический ряд, то есть ряд, составленный из членов, обратных числам натурального ряда, для r = 1 является расходящимся. Следовательно, сумма большого числа членов стремится к бесконечности. В то время доказательства приводили в буквальном виде, описывая шаги, которые нужно сделать, но мы рассмотрим это искусное рассуждение, пользуясь более привычными символами. Орезмский сгруппировал члены, то есть у него был первый член, два следующих, четыре следующих, восемь следующих и так далее:

1/2+1/3+1/4+1/5+1/6+1/7+1/8+...+ = 1/2+(1/2+1/4)+(1/5+1/6+1/7+1/8)+...+ = 1/2+7/12+533/840+...

Так получается ряд дробей, каждая из которых больше 1 /2, то есть сумму ряда можно сделать больше любого указанного числа, просто взяв достаточное число членов ряда.

Индийский математик и астроном Мадхава из Сангамаграма (1350-1425) описал среди прочих бесконечных рядов ряды тригонометрических функций синуса и косинуса. Он также нашел ряд арктангенса:

arct x = x - x3/3 + x5/5 + x7/7 + ,,,

Через несколько лет шотландский математик Джеймс Грегори (1638-1675) первым в Европе открыл этот ряд, о нем узнал Лейбниц и воспользовался им для выведения первого ряда для числа π, недостатком которого было то, что он очень медленно приближается к истинному значению. Он известен как ряд Грегори — Лейбница, хотя другие авторы сегодня его называют рядом Мадхавы — Лейбница:

π/4 = 1 - 1/3 + 1/5 + 1/7 + ... + (-1)n/(2n+1) + ...

И Ньютон, и Лейбниц также вычисляли ряды степеней других тригонометрических функций.

Вычисление числа k было постоянным предметом поиска математиков всех времен. Это число определяется как отношение между длиной окружности и ее диаметром. Многие пытались найти наибольшее количество десятичных знаков данного числа, и одним из использованных методов был метод числовых рядов. Он подразумевает, что по мере того, как вычисляется больше членов, появляется большее количество точных знаков после запятой.

Ряды не всегда были суммами. Например, математик Франсуа Виет (1540-1603), один из создателей современной алгебры, представил первое бесконечное произведение, приближающееся к значению π, таким образом:

π = 2 • 2/√2 • 2/√(2+√2) • 2/√(2+√(2+√2)) • 2/√(2+√(2+√(2+√2)))

Сам Грегори, в свою очередь, пытаясь вычислить площадь круга, пришел к другому выражению для вычисления я:

π/2 = (2 • 2 • 4 • 4 • 6 • 6 • 8 • 8 ...)/(1 • 3 • 3 • 5 • 5 • 7 • 7 • 9 ...)

XVII век был временем популярности сумм бесконечных рядов степеней, которые служили для поиска квадратуры фигур, ограниченных различными типами кривых, то есть площади сегмента какой-либо кривой.


ЛЕЙБНИЦ И БЕСКОНЕЧНЫЕ РЯДЫ

Когда в 1672 году Лейбниц навестил Гюйгенса в Париже, он рассказал ему о методе, над которым работал. Он использовался для нахождения суммы членов бесконечных рядов чисел и состоял в том, чтобы учитывать разность между членами последовательности. Если у нас есть ряд членов a0

1 ... 14 15 16 ... 38
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Лейбниц. Анализ бесконечно малых - Jose Munoz Santonja», после закрытия браузера.

Комментарии и отзывы (0) к книге "Лейбниц. Анализ бесконечно малых - Jose Munoz Santonja"