Надо сказать, что Роберт Гук — один из самых значительных ученых-экспериментаторов в истории. Его интересовали совершенно разные дисциплины. В 1662 году он занимал в Королевском обществе должность куратора экспериментов. В его обязанности входило делать еженедельный доклад, посвященный новым открытиям, и проводить публичные эксперименты, эти открытия подтверждающие. В 1677 году он стал секретарем Общества. Ученый утверждал, что у него были идеи, затрагивающие многие великие открытия его времени, однако другие развивали и публиковали их быстрее, чем он. Из-за этого он всегда был вовлечен в многочисленные споры об авторстве того или иного открытия. Особое место занимает его полемика с Исааком Ньютоном по поводу приоритета в открытии закона всемирного тяготения. Ненависть между ними достигла такой степени, что после смерти своего оппонента Ньютон уничтожил все его портреты, поэтому Гук является единственным членом Королевского общества, чей облик нам неизвестен.
В любом случае Лейбниц был так доволен своим участием в собраниях Общества, что подал заявку на вступление в него до того, как покинул Лондон, и его приняли в середине апреля.
На встрече с Сэмюэлем Морлендом оба ученых продемонстрировали друг другу свои вычислительные машины. Лейбниц также навестил Роберта Бойля и познакомился с математиком Джоном Пеллом (1611-1685), с которым обсуждал методы нахождения суммы ряда и метод разностей, изобретенный Лейбницем для вычисления суммы рядов.
До того как ученый покинул Англию, он получил новость о смерти курфюрста Майнца, так что дипломатическая миссия, которую ему поручили, была отложена. Это позволило ему не ехать в Нидерланды и вернуться в Париж.
СОВЕТНИК ПРИ ГАННОВЕРСКОМ ДВОРЕ
В 1675 году Лейбниц находился в Париже, не имея никаких конкретных поручений. Было очевидно, что он хочет остаться в столице Франции, чтобы принять участие в научной революции. Из-за этого он отказался от должности секретаря первого министра короля Дании и от должности советника герцога Иоганна Фридриха Ганноверского. В конце года ученый попытался получить оплачиваемое место в Парижской академии наук, однако Академия ответила, что Гюйгенс и Кассини занимают все предназначенные для иностранцев места.
Лейбниц написал герцогу Иоганну Фридриху Ганноверскому под предлогом разговора об арифметической машине (к тому времени она получила большую похвалу в Академии, так как ученый представил исправно работающий экземпляр) и заодно согласился на должность, которую тот ему предложил несколько месяцев ранее. В январе 1676 года он занял должность советника, одновременно получив назначение советником нового курфюрста Майнца.
Лейбниц пытался не оставлять Париж и время от времени ездил в Ганновер и Майнц. Он старался поддерживать политические связи и не терять прямого контакта с Академией, а также с учеными и философами, которые посещали город. Благодаря поездкам он мог сообщать о наиболее важных достижениях науки своим покровителям.
В течение нескольких месяцев Лейбницу поступали из Ганновера требования немедленно переехать в этот город, но он тянул с ответом. В итоге ученому поставили ультиматум, поскольку он должен был не только стать советником, но и занять вакантное место библиотекаря герцогской библиотеки. Благодаря этой должности он много разъезжал, покупая частные собрания книг, в которых попадались интересные экземпляры для герцогской библиотеки.
В конце концов в начале октября 1676 года Лейбниц покинул Париж. Больше он туда никогда не возвращался. Путь Лейбница лежал из Кале через Лондон: там он снова встретился с Ольденбургом, которому показал улучшенный прототип арифметической машины, а также с библиотекарем Королевского общества, математиком Джоном Коллинзом, оставшимся под большим впечатлением от эрудиции Лейбница.
Бесконечные ряды
Кроме арифметической машины одним из первых результатов своих исследований, с которыми Лейбниц познакомил Королевское общество, был метод нахождения суммы членов бесконечных рядов.
СУММА ЧЛЕНОВ ГЕОМЕТРИЧЕСКОЙ ПРОГРЕССИИ
Первая известная сумма бесконечных членов найдена для так называемой геометрической прогрессии. Результаты вычисления суммы этого ряда фигурируют уже в папирусе Ринда. Задача заключается в том, чтобы найти сумму бесконечного количества степеней, основание которых — число, меньшее единицы. Самый традиционный пример — сумма геометрической прогрессии:
1/2+(1/2)2+(1/2)3+(1/2)4+ ... + 1/2+1/4+1/8+1/16+ ...= 1
Этот процесс нагляден: возьмем за единицу площадь квадрата, который мы разделим на две части, и одну из них — снова напополам; из двух оставшихся частей одна снова делится посередине, и теоретически можно продолжить данный процесс до бесконечности. Суммой всех полученных нами фигур является исходный квадрат, то есть единица. С этим типом рядов, которые обычно представлены следующим выражением:
∑rn = 1+r+r2+r3+r4+...
n≥0
знакомы и работают ученики средней школы. Чтобы найти значение суммы, нам нужно сложить п членов геометрической прогрессии, а затем умножить эту сумму на знаменатель прогрессии г. Затем вычитаем одно выражение из другого:
S = (1+r+r2+r3+r4+...+rn)- (r • S = r+r2+r3+r4+r5+...+rn+1)/(S - r • S = 1 - rn+1)
Таким образом мы можем выделить S и получить значение суммы, которое мы искали:
S = (1-rn+1)/(1-r)
Теперь, если принять, что r имеет значение, меньшее 1, и что вместо сложения п членов мы складываем бесконечное количество, значение rn+1 становится нулем, и, следовательно, сумма сводится к:
S = 1/(1-r)
Математики всегда искали формулы, которые бы позволили с легкостью складывать большое число членов. Уже в античности были известны суммы членов рядов первых степеней: n, n2 и n3.
1+2+3+4+5+6+7+...+ = n(n+1)/2 = n2/2+n/2,
12+22+32+...+n2 = n(n+1)(2n+1)/6 = n3/3+n2/2+n/6,
13+23+33+...+n3 = n2(n+1)2/4 = n4/4+n3/2+n2/4.
Но с самого начала математики были очень заинтересованы в изучении конкретного случая, когда сумма бесконечного числа членов дает конечное значение. Над этой проблемой работали, например, Демокрит и Архимед.