Ознакомительная версия. Доступно 25 страниц из 123
Рис. 12.2. Описываемые в этой книге параллельные вселенные образуют четырёхуровневую иерархию, где каждый мультиверс является одним из многих элементов на следующем уровне.
Интересно, что в контексте гипотезы математической Вселенной (ГМВ) существование мультиверса IV уровня не является факультативным. ГМВ утверждает, что математическая структура является самой нашей внешней физической реальностью, а не просто её описанием. Эта эквивалентность между физическим и математическим существованием означает, что если математическая структура содержит самосознающую субструктуру, та будет воспринимать себя как существующую в реальной физической вселенной так же, как мы с вами (хотя, вообще говоря, во вселенной, отличающейся свойствами от нашей). Стивен Хокинг задал знаменитый вопрос: «Что вдыхает огонь в уравнения и создаёт Вселенную, чтобы они описывали её?» В рамках ГМВ никакого огня не требуется, поскольку суть не в том, что математические структуры описывают Вселенную, а в том, что они являются Вселенной. Более того, и создавать ничего не требуется. Нельзя образовать математическую структуру — она просто существует. Но не она существует в пространстве и времени — пространство и время могут существовать в ней. Иными словами, все структуры, которые существуют математически, имеют одинаковый онтологический статус, и самый интересный вопрос не в том, какие из них существуют физически (все они существуют), но какие из них содержат жизнь и, возможно, нас. Многие математические структуры — додекаэдр, например, — недостаточно сложны, чтобы поддерживать самосознающие субструктуры какого-либо вида. Так что скорее всего мультиверс IV уровня напоминает огромную, по большей части необитаемую пустыню, где жизнь заключена в редких оазисах дружественных к биологии математических структур, вроде той, в которой живём мы. Аналогично (гл. 6), мультиверс II уровня по большей части бесплоден, а самосознание заключено в нём в крошечную долю пространства, которой повезло иметь как раз подходящие для жизни значения плотности тёмной энергии и других физических параметров. В мультиверсе I уровня история, похоже, повторяется и жизнь процветает в основном в крошечной доле пространства у самой поверхности планет. Так что мы, люди, находимся в чрезвычайно привилегированном месте!
Исследование мультиверса IV уровня
Наши ближайшие соседи
Потратим немного времени на знакомство с мультиверсом IV уровня и «зоопарком» содержащихся в нём математических структур. Начнём с ближних окрестностей. Хотя мы ещё не знаем точно, в какой математической структуре живём, нетрудно представить себе множество небольших её модификаций, дающих другие корректные математические структуры. Стандартная модель физики элементарных частиц включает определённые симметрии, которые математики обозначают так: SU(3) × SU(2) × U(1), и если заменить их иными симметриями, получится другая математическая структура с частицами иных типов и силами, где кварки, электроны и фотоны заменены иными сущностями с новыми свойствами. В некоторых математических структурах нет света, а в других отсутствует гравитация. В эйнштейновском математическом описании пространства-времени числа 1 и 3, соответственно задающие количество временных и пространственных измерений, могут быть заменены иными значениями по выбору.
В гл. 6 мы обсудили, как в рамках одной математической структуры с единственным набором фундаментальных законов физики инфляция может порождать различные эффективные физические законы в разных частях пространства, образуя тем самым мультиверс II уровня. Сейчас мы говорим о чём-то более радикальном, где даже фундаментальные законы могут отличаться и где нет, например, квантовой механики. Если теорию струн можно строго определить математически, то существует математическая структура, для которой теория струн является верной «теорией всего», но для всего остального в мультиверсе IV уровня это не так.
Чтобы оценить мультиверс IV уровня, надо раскрепостить воображение, освободиться от предубеждений относительно того, какими должны быть законы физики. Рассмотрим пространство и время. Вместо того чтобы быть непрерывными, как предполагается для нашего мира, они могут оказаться дискретными, как в «Пэкмене» и «Тетрисе» или в игре «Жизнь» Джона Конвея, где движения характеризуется лишь резкими скачками. Если отключить подачу команд пользователя так, чтобы эволюцию во времени можно было рассчитывать детерминистически, все эти игры отвечают корректным математическим структурам. На рис. 12.3 показан упоминавшийся в гл. 3 трёхмерный клон «Тетриса» под названием FRAC, написанный мной с приятелем Пером Бергландом в 1990 году. Если запустить его и не трогать клавиатуру (много очков с такой стратегией не набрать), то игра от начала до конца определяется простыми математическими правилами, заложенными в программу. Они делают её математической структурой, входящей в мультиверс IV уровня. Часто встречаются рассуждения о том, что даже в нашей Вселенной пространство-время может проявлять своего рода дискретность, скрывающуюся в столь малых масштабах, что мы до них ещё не добрались.
Рис. 12.3. FRAC, трёхмерный клон «Тетриса», реализует математическую структуру, где пространство и время дискретны, а не непрерывны.
Рис. 12.4. Компьютерная программа может автоматически генерировать упорядоченный список конечных математических структур, где каждая кодируется последовательностью цифр. В таблице показаны некоторые примеры, заданные при помощи схемы кодирования из моей статьи 2007 года. Слова и диаграммы во второй колонке — это избыточный «багаж», отражающий способы, какими люди называют и иллюстрируют эти структуры.
Или даже так: существует множество математических структур, где нет ни пространства, ни времени, а значит, не имеет и смысла говорить, будто в них что-то происходит. Большинство структур, примеры которых приведены на рис. 12.4, как раз такого типа. Скажем, внутри абстрактного додекаэдра ничего не происходит, поскольку эта математическая структура не содержит времени.
Наш «почтовый индекс» в мультиверсе IV уровня
Как отмечалось в гл. 10, математическая структура — это множество абстрактных элементов с отношениями между ними. Для более систематического изучения мультиверса IV уровня нам понадобится написать компьютерную программу, которая автоматически генерирует список существующих математических структур, начиная с простейших. На рис. 12.4 показаны десять строк этого списка, составленного с помощью схемы кодирования, которую я описал в статье 2007 года о математической Вселенной.[84] Детали этого метода здесь несущественны, кроме того замечательного свойства, что любая математическая структура с конечным числом элементов обязательно появится в этом списке. А значит, любую из этих математических структур можно задать одним числом — её номером в списке.
Ознакомительная версия. Доступно 25 страниц из 123