Топ за месяц!🔥
Книжки » Книги » Домашняя » Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк 📕 - Книга онлайн бесплатно

Книга Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк

250
0
На нашем литературном портале можно бесплатно читать книгу Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 95 96 97 ... 123
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 25 страниц из 123

• ГМВ предполагает, что вы — самосознающая субструктура математической структуры. В эйнштейновской теории гравитации вы представляете собой косицеобразную структуру в пространстве-времени, паттерн которой соответствует обработке информации и самосознанию. В квантовой механике ваш паттерн ветвится, подобно дереву.

• Похожая на кино субъективная реальность существует лишь у вас в голове как часть модели реальности вашего мозга, и она включает не только отредактированные образы, полученные здесь и сейчас, но и подборки заранее записанных отдалённых в пространстве и времени событий, что создаёт иллюзию течения времени.

• Вы обладаете самосознанием, а не просто сознанием, поскольку модель реальности мозга включает модель вас самих и отношений с внешним миром: восприятие субъективной наблюдательной перспективы, которую вы называете «я», — это квалиа, подобно субъективному восприятию «красного» или «сладкого».

• Теория, предполагающая, что внешняя физическая реальность идеально описывается математической структурой, но не является ею, стопроцентно ненаучна в том смысле, что не даёт проверяемых наблюдениями предсказаний.

• Следует ожидать, что ваше текущее наблюдательное мгновение является типичным среди всех наблюдательных мгновений, которые воспринимаются подобно вашему. Это рассуждение приводит к спорным выводам относительно конца человечества, стабильности Вселенной, правильности теории космологической инфляции, а также того, не являетесь ли вы лишённым тела мозгом или симуляцией.

• Это рассуждение также приводит к проблеме меры — научному кризису, который ставит под вопрос способность физики предсказывать что-либо.

Глава 12. Мультиверс IV уровня

Что вдыхает огонь в уравнения и создаёт Вселенную, чтобы они описывали её?

Стивен Хокинг
Почему я верю в мультиверс IV уровня

Почему эти уравнения, а не другие?

Предположим, что вы физик и нашли, как объединить физические законы в «теорию всего». Пользуясь её математическими уравнениями, вы можете ответить на трудные вопросы, которые лишают физиков сна, например, как действует квантовая гравитация или как решить проблему меры. Футболка с вашими уравнениями стала бестселлером. Вас наградили Нобелевской премией. Вы ликуете, но в ночь перед церемонией не можете уснуть, поскольку так и остался без ответа вопрос, поставленный Джоном Уилером: почему именно эти уравнения, а не другие?

В двух предыдущих главах я обосновывал гипотезу математической Вселенной (ГМВ), согласно которой наша внешняя физическая реальность является математической структурой, и это лишь заостряет вопрос Уилера. Математики открыли много математических структур, и прямоугольники на рис. 12.1 изображают некоторые простейшие из них. Ни одна из этих структур не совпадает с нашей физической реальностью целиком. В 1916 году прямоугольник, помеченный словами «Общая теория относительности», был серьёзным кандидатом на точное совпадение, поскольку он охватывал не только пространство и время, но и различные формы материи. Однако открытие квантовой механики вскоре сделало очевидным, что физическая реальность обладает такими свойствами, которых у этой математической структуры нет. К счастью, теперь вы можете дополнить этот рисунок, добавив открытую вами математическую структуру, за которую вам присуждается премия, и твёрдо зная, что именно этот новый прямоугольник — тот самый, соответствующий нашей физической реальности.

На этом месте я слышу, как дружелюбный голос Джона Уилера вставляет: «А что можно сказать о других прямоугольниках?» Если ваш прямоугольник соответствует физически существующей реальности, то почему не другие?

Все прямоугольники имеют равноценный математический фундамент, соответствующий различным математическим структурам, почему же некоторые из них оказываются «равнее» других, когда дело доходит до физического существования? Может ли существовать фундаментальная необъяснённая экзистенциальная асимметрия в сердцевине реальности, разделяющая математические структуры на два класса — обладающие и не обладающие физическим существованием?


Математическая демократия

Этот вопрос глубоко встревожил меня вечером 1990 года, когда мне впервые пришла в голову идея математической Вселенной и я изложил её своему другу Биллу Пуарье на пятом этаже общежития в Беркли, в коридоре. И лампочка у меня в голове не гасла, пока я не понял, что из этого философского парадокса есть выход. Я сказал Биллу, что соблюдается полная математическая демократия: математическое и физическое существование эквивалентны, так что все структуры, которые существуют математически, существуют также и физически. Каждый прямоугольник на рис. 12.1 описывает реальную вселенную — просто отличную от той, где довелось жить нам. В этом можно усмотреть своего рода радикальный платонизм, согласно которому все математические структуры в платоновском царстве идей существуют где-то в физическом смысле.


Рис. 12.1. Взаимосвязи между фундаментальными математическими структурами. Стрелки, как правило, указывают на добавление новых понятий и (или) аксиом. Сходящиеся стрелки указывают на объединение структур, например алгебра — это векторное пространство, которое также является кольцом, а группа Ли — это группа, которая также является многообразием. Это «фамильное древо», по-видимому, имеет бесконечную протяжённость: на рисунке показана лишь небольшая его часть, у самого основания.


Иными словами, IV уровень параллельных вселенных, соответствующий различным математическим структурам, неизмеримо обширнее тех, с которыми мы до сих пор встречались. Первые три уровня соответствуют некоммуницирующим параллельным вселенным внутри одной математической структуры: I уровень означает просто далёкие области, из которых свет ещё не успел дойти до нас, II уровень охватывает области, которые навсегда останутся недосягаемыми из-за космологической инфляции в разделяющем нас пространстве, а III уровень, эвереттовская Мультивселенная, включает некоммуницирующие части гильбертова пространства квантовой механики. В то время как параллельные вселенные на I, II и III уровнях подчиняются одним и тем же уравнениям (описывающим квантовую механику, инфляцию и т. д.), IV уровень касается выбора уравнений, отвечающих разным математическим структурам. На рис. 12.2 показана четырёхуровневая иерархия мультиверсов, которая является стержневой идеей моей книги.


Как из гипотезы математической Вселенной вытекает мультиверс IV уровня?

Если теория о существовании мультиверса IV уровня верна, то, поскольку у неё нет свободных параметров, все свойства всех параллельных вселенных (включая субъективные восприятия самосознающих структур в них) могут, в принципе, быть выведены бесконечно умным математиком. Но верна ли эта теория? Действительно ли существует мультиверс IV уровня?

Ознакомительная версия. Доступно 25 страниц из 123

1 ... 95 96 97 ... 123
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк», после закрытия браузера.

Комментарии и отзывы (0) к книге "Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк"