Ознакомительная версия. Доступно 19 страниц из 94
class="p1">Rémi Gervais et al., What Do Electrophysiological Studies Tell Us about Processing at the Olfactory Bulb Level? Journal of Physiology 101, no. 1–3 (2007): 40–45.
335
Rachel A. Ankeny and Sabina Leonelli, What’s So Special about Model Organisms? Studies in History and Philosophy of Science Part A 42, no. 2 (2011): 313–323.
336
Alison Maresh et al., Principles of Glomerular Organization in the Human Olfactory Bulb – Implications for Odor Processing, PloS One 3, no. 7 (2008): e2640.
337
Thomas A. Cleland and Praveen Sethupathy, Non-topographical Contrast Enhancement in the Olfactory Bulb, BMC Neuroscience 7 (2006): 7.
338
Andy Clark, Whatever Next? Predictive Brains, Situated Agents, and the Future of Cognitive Science, Behavioral and Brain Sciences 36, no. 3 (2013): 181–204.
339
Erich Holst and Horst Mittelstaedt, Das Reafferenzprinzip, Natur-wissenschaften 37, no. 20 (1950): 464–476; Roger W. Sperry, Neural Basis of the Spontaneous Optokinetic Response Produced by Visual Inversion, Journal of Comparative and Physiological Psychology 43, no. 6 (1950): 482–489.
340
Экзафферентный сигнал – восходящий нервный сигнал, идущий от внешнего предмета. Реафферентный сигнал – его противоположность, восходящий сигнал, вызванный собственными действиями организма. – Прим. пер.
341
Ann-Sophie Barwich, Measuring the World: Towards a Process Model of Perception, in Everything Flows: Towards a Processual Philosophy of Biology, ed. D. Nicholson and J. Dupré (Oxford: Oxford University Press, 2018), 227–256.
342
Christine A. Skarda and Walter J. Freeman, How Brains Make Chaos in Order to Make Sense of the World, Behavioral and Brain Sciences 10, no. 2 (1987): 161–173; Walter J. Freeman, Simulation of Chaotic EEG Patterns with a Dynamic Model of the Olfactory System, Biological Cybernetics 56, no. 2–3 (1987): 139–150; Yong Yao and Walter J. Freeman, Model of Biological Pattern Recognition with Spatially Chaotic Dynamics, Neural Networks 3, no. 2 (1990): 153–170; Walter J. Freeman, Neural Networks and Chaos, Journal of Theoretical Biology 171, no. 1 (1994): 13–18; Walter J. Freeman, Characterization of State Transitions in Spatially Distributed, Chaotic, Nonlinear, Dynamical Systems in Cerebral Cortex, Integrative Physiological and Behavioral Science 29, no. 3 (1994): 294–306.
343
Anthony Chemero, Empirical and Metaphysical Anti-representationalism, in Understanding Representation in the Cognitive Sciences, ed. A. Riegler, M. Peschi, and A. von Stein (Boston: Springer, 1999), 41.
344
Leslie M. Kay, Larry R. Lancaster, and Walter J. Freeman, Reafference and Attractors in the Olfactory System during Odor Recognition, International Journal of Neural Systems 7, no. 4 (1996): 489–495.
345
Gilles Laurent, Olfactory Network Dynamics and the Coding of Multidimensional Signals, Nature Reviews Neuroscience 3, no. 11 (2002): 884.
346
«Энигма» (от нем. Änigma – загадка) – переносная шифровальная машина, использовавшаяся для шифрования и расшифровки секретных сообщений преимущественно в середине XX века. – Прим. ред.
347
Dan D. Stettler and Richard Axel, Representations of Odor in the Piriform Cortex, Neuron 63, no. 6 (2009): 854–864.
348
Dara L. Sosulski et al., Distinct Representations of Olfactory Information in Different Cortical Centres, Nature 472, no. 7342 (2011): 213.
349
M. Inês Vicente and Zachary F. Mainen, Convergence in the Piriform Cortex, Neuron 70, no. 1 (2011): 1–2.
350
Воспроизводящиеся на выходе после сжатия на промежуточных этапах. – Прим. ред.
351
Lewis B. Haberly, Parallel-Distributed Processing in Olfactory Cortex: New Insights from Morphological and Physiological Analysis of Neuronal Circuitry, Chemical Senses 26, no. 5 (2001): 551–576; Robert L. Rennaker et al., Spatial and Temporal Distribution of Odorant-Evoked Activity in the Piriform Cortex, Journal of Neuroscience 27, no. 7 (2007): 1534–1542; Donald A. Wilson and Regina M. Sullivan, Cortical Processing of Odor Objects, Neuron 72, no. 4 (2011): 506–519; Donald A. Wilson, Mikiko Kadohisa, and Max L. Fletcher, Cortical Contributions to Olfaction: Plasticity and Perception, Seminars in Cell & Developmental Biology 17, no. 4 (2006): 462–470; Merav Stern et al., A Transformation from Temporal to Ensemble Coding in a Model of Piriform Cortex, eLife 7 (2018): e34831; Kevin A. Bolding et al., Pattern Recovery by Recurrent Circuits in Piriform Cortex, bioRxiv 694331 (2019): 694331; Naoshige Uchida, Cindy Poo, and Rafi Haddad, Coding and Transformations in the Olfactory System, Annual Review of Neuroscience 37 (2014): 363–385; P. Litaudon et al., Piriform Cortex Functional Heterogeneity Revealed by Cellular Responses to Odours, European Journal of Neuroscience 17, no. 11 (2003): 2457–2461; Cindy Poo and Jeffry S. Isaacson, An Early Critical Period for Long-Term Plasticity and Structural Modification of Sensory Synapses in Olfactory Cortex, Journal of Neuroscience 27, no. 28 (2007): 7553–7558.
352
Vicente and Mainen, Convergence in the Piriform Cortex.
353
Chien-Fu F. Chen et al., Nonsensory Target-Dependent Organization of Piriform Cortex, Proceedings of the National Academy of Sciences 111, no. 47 (2014): 16931–16936.
354
Benjamin Roland et al., Odor Identity Coding by Distributed Ensembles of Neurons in the Mouse Olfactory Cortex, eLife 6 (2017): e26337.
355
John J. Hopfield, Pattern Recognition Computation Using Action Potential Timing for Stimulus Representation, Nature 376, no. 6535 (1995): 33; Brice Bathellier, Olivier Gschwend, and Alan Carleton, Temporal Coding in Olfaction, in The Neurobiology of Olfaction, ed. A. Menini (Boca Raton, FL: CRC Press, 2010), chapter 13.
356
Christopher D. Wilson et al., A Primacy Code for Odor Identity, Nature Communications 8, no. 1 (2017): 1477.
357
Rebecca Jordan, Mihaly Kollo, and Andreas T. Schaefer, Sniffing Fast: Paradoxical Effects on Odor Concentration Discrimination at the Levels of Olfactory Bulb Output and Behavior, eNeuro
Ознакомительная версия. Доступно 19 страниц из 94