ЛЕЙБНИЦ И АКАДЕМИИ НАУК
Готфрид Вильгельм Лейбниц не только был членом основных академий наук XVII века, но также поддерживал и воодушевлял ученых на создание многих других сообществ.
В 1700 году принц Фридрих III (1657-1713), курфюрст Бранденбурга, создал Прусскую академию наук, более известную как Берлинская академия. Он сделал это по настоянию Лейбница, который был назначен ее председателем. Тремя годами ранее, когда София Шарлотта Ганноверская, герцогиня Брауншвейг-Люнебургская и будущая королева Пруссии, задумала создание астрономической обсерватории в Германии, Лейбниц, большой друг герцогини, предложил расширить этот проект и создать академию, подобную Парижской и Лондонской.
В качестве председателя Берлинской академии Лейбниц издал ряд документов, указывающих, как должна строиться деятельность нового научного общества. Академия должна была развивать как теорию, так и практику, чтобы ее знаниями пользовались не только деятели искусства и науки страны, но также промышленность и торговля. Научное общество должно было обращать особенное внимание на фундаментальные науки, такие как математика и физика, хотя в эти понятия включалось намного больше, чем можно представить себе сегодня. Лейбниц разделял математику на четыре части: геометрию, включая анализ; астрономию и связанные с ней области (географию, хронологию, оптику); архитектуру (гражданскую, военную, морскую), в которую также включались живопись и скульптура; а также механику с ее технологическим применением. В свою очередь, в понятие физики входили химия и науки о животных, растениях и минералах.
Озабоченный проблемами финансирования Академии, Лейбниц добился для общества монопольного права разработки и продажи календарей. Позже он представил проект шелководства (разведения шелковичных червей), чтобы достать средства и обеспечить экономическое выживание Академии. С этой целью Лейбниц организовал посадку и выращивание шелковичных деревьев в королевских садах Потсдама. Правда, проект в итоге не удался, и далее Лейбниц осуществлял эксперименты с шелковичными червями в собственных садах.
Ученый также попытался основать академии в Дрездене и в Вене, но из этого ничего не получилось.
НАУЧНЫЕ ЖУРНАЛЫ
Первым научным журналом можно назвать Journal des Sgavans («Журналъ де саван»), вышедший в Париже в январе 1665 года. Однако тематика данного издания не была исключительно научной, поскольку в нем публиковались статьи по законодательству, а также некрологи известных людей. Журнал был основан советником парламента Дени Салло под покровительством министра Кольбера. В нем было рассказано о некоторых открытиях Лейбница, а также о работах Декарта, Гука и Гюйгенса. Во время Французской революции выпуск журнала прекратился; потом он снова появился, но уже стал сугубо литератураным изданием.
Полностью научным журналом, самым важным в течение долгого времени, был Philosophical Transactions of the Royal Society. Его первый номер вышел в марте 1665 года. Своим появлением это издание обязано секретарю Королевского общества Генри Ольденбургу. Последний отчетливо понимал необходимость найти средство, которое позволило бы доводить информацию о новейших научных достижениях до сведения всех заинтересованных лиц. Ольденбург публиковал журнал за свой счет с согласия Королевского общества, полагая, что затеял выгодное дело, но он ошибся. Начиная с XVIII века Philosophical Transactions стал официальным вестником общества.
Нет ничего более необходимого для продвижения философских идей, чем сообщение о них.
Генри Ольденбург. Philosophical Transactions
В этом журнале впервые были опробованы принципы работы, которые сегодня используются во всех научных изданиях. Независимо от приоритетности статьи Ольденбург посылал ее текст различным людям, чтобы те оценили, представляет ли ее публикация какой-либо интерес.
Также по настоянию Лейбница в 1682 году в Лейпциге начал публиковаться журнал Acta eruditorum («Акты ученых»), основанный немецким ученым Отто Менке (1644-1707) и прекративший свое существование в 1782 году. Он издавался на латыни (языке, который понимали все ученые того времени), поэтому был очень популярен. Лейбниц регулярно публиковался в этом журнале, и если просмотреть его выпуски, можно убедиться, что ученого интересовало множество разных тем.
В его первой статье речь шла о квадратуре круга, но во многих других номерах мы находим статьи по оптике, разложению на множители, исследованию наклонных плоскостей и сопротивления балок нагрузке.
Кроме того, Лейбниц создал ежегодный журнал, где печатались статьи, рецензии и интересные результаты исследований членов Берлинской академии. Первый номер этого издания, под названием Miscellanea Beronilensia, вышел в 1710 году. Значительная часть статьей в нем принадлежала самому Лейбницу, который писал о таких различных вещах, как, например, его арифметическая машина, математика и механика, изучение происхождения наций на основе лингвистики, открытие фосфора и северное сияние. И это еще без учета его статей в соавторстве.
Мы упомянули ранее, что Лейбниц начал открывать себе дорогу в научные общества благодаря своему арифмометру. Возвращаясь к этой теме, взглянем на эволюцию механических вычислительных устройств.
КАК СЧИТАТЬ БОЛЕЕ ЭФФЕКТИВНО
С тех пор как человек научился считать, он применяет это умение во всех областях своей жизни. С развитием цивилизации сложность вычислений возрастала: приходилось осуществлять каждый раз все более трудоемкие подсчеты, связанные с торговлей, путешествиями, астрономией и так далее. Тогда- то человек и начал придумывать различные способы быстрых и надежных вычислений. Так появились счетные инструменты, призванные механизировать некоторые вычислительные операции. Они позволяли исключить или минимизировать ошибки, которым подвержено любое ручное вычисление.
Первые попытки вычислять проще и качественнее были «пальцевыми». Некоторые приемы позволяют производить с помощью пальцев более сложные операции, чем сложение и вычитание. Например, чтобы быстро умножить на 9, существует правило, состоящее в том, чтобы протянуть две руки и начать считать с края, обычно слева, и загнуть палец, соответствующий числу, на которое мы хотим умножить 9. Для получения результата достаточно сосчитать количество пальцев слева от согнутого (это будет число десятков) и после согнутого (это будет число единиц). На рисунке 3 мы видим, что результат умножения 9x4 равен 36.
Выдающемуся человеку недостойно терять время на рабский труд — вычисление, которое может осуществить любой с помощью машины.
Готфрид Вильгельм Лейбниц
Если мы хотим умножить два числа больше 5, достаточно загнуть на каждой руке количество пальцев, соответствующее результату вычитания 5 из каждого множителя. Загнутые пальцы на обеих руках суммируются и умножаются на 10, и к этому прибавляется произведение числа поднятых пальцев на обеих руках. На рисунке 4 мы можем увидеть результат умножения 8 (8-5 = 3 загнутых пальца, в этом случае на правой руке) х9(9-5 = 4 загнутых пальца). Так как у нас загнуто 7 пальцев, а поднято 2 на одной руке и 1 на другой, то произведение 8x9 = 7x10 + 1x2 = 72.