Необычные конфигурации атомов, как в автомобиле Bugatti или гитаре, несут больше информации, чем более распространенные конфигурации тех же атомов, хотя технически (и Шеннон в этом прав) передача сообщения об упорядоченной конфигурации и передача сообщения о неупорядоченной конфигурации требует одинакового количества битов, если мы проигнорируем корреляции, превалирующие в упорядоченном состоянии (которые мы можем использовать для сжатия последовательности, что позволит сократить количество битов, требующихся для передачи сообщения об упорядоченном состоянии). Тем не менее, несмотря на разницу в интерпретации, которая мешает примирить идеи Шеннона и Больцмана, мы по-прежнему можем сделать вывод о том, что из информации состоят не только сообщения, но и большинство вещей.
Итак, давайте вернемся к автомобилю Bugatti. Случай с Bugatti не так прост, как случай с твитом, поскольку он подразумевает позиционирование огромного числа атомов, а не просто 140 символов. Кроме того, как я только что сказал, в случае с Bugatti мы ищем не любую возможную конфигурацию атомов, а конфигурацию, соответствующую чему-то вроде автомобиля Bugatti (как и в примере с редкой комбинацией занятых на стадионе мест). Например, перестановка шин Bugatti приводит к изменению расположения атомов, но ни одно из основных интересующих нас свойств при этом не изменяется, поэтому мы будем рассматривать все автомобили Bugatti с перестановленными шинами одинаковыми. Тем не менее группа автомобилей, находящихся в идеальном состоянии, относительно мала, а это означает, что в совокупности всех возможных комбинаций атомов (как и перемещающихся по стадиону людей) лишь некоторые представляют собой Bugatti в идеальном состоянии. С другой стороны, группа разбитых Bugatti включает гораздо большее количество состояний (более высокое значение энтропии) и, следовательно, несет меньше информации (хотя для передачи сообщения о каждом из этих состояний требуется большее количество битов). Однако, к самой большой группе, которая включает случайные комбинации сидящих на стадионе зрителей, относятся автомобили Bugatti в их «естественном» состоянии. Это состояние, в котором железо представляет собой руду, а алюминий входит в состав боксита. Таким образом, разрушение автомобиля Bugatti приводит к уничтожению информации. С другой стороны, создание Bugatti – это процесс воплощения информации.
Пример со стадионом позволяет нам понять, что конфигурации материи, воплощающие информацию, например автомобиль Bugatti, являются редкими и труднодостижимыми. Пример со стадионом также подчеркивает динамическое происхождение порядка, поскольку для любой формы порядка атомы должны располагаться в определенном месте. Проблема состоит в том, что системы не могут свободно переходить из одного состояния в любое другое. Как показывает пример со стадионом, существующее состояние системы ограничивает число возможных вариантов ее преобразования, а для перехода системы от беспорядочного состояния к упорядоченному необходимо совершить множество последовательных шагов. К сожалению, количество путей, ведущих систему от беспорядка к порядку, гораздо меньше, чем количество путей, ведущих от порядка к беспорядку. В системе, эволюция которой является случайной (как в системе статистической физики), совершить серию последовательных шагов нелегко.
Подумайте о кубике Рубика, который прекрасно иллюстрирует связь между доступными путями и энтропией, поскольку вам никогда не удастся собрать кубик Рубика случайным образом (хотя вы и можете совершить такую отчаянную попытку). Кубик Рубика предусматривает более 43 квинтиллионов возможных состояний (то есть 43 252 003 274 489 856 000, или 4,3 × 1019), только одно из которых является идеально упорядоченным. Кроме того, кубик Рубика представляет собой систему, в которой до достижения порядка не так уж далеко, поскольку эту головоломку всегда можно решить за двадцать или менее ходов.[25] Кажется, что это сравнительно небольшое число, однако найти нужную последовательность шагов непросто. Большинство людей собирают кубик Рубика гораздо более извилистыми путями. Основной метод решения данной головоломки (выстраивание верхнего креста, позиционирование углов, завершение среднего ряда и т. д.), как правило, подразумевает более пятидесяти ходов (и до недавнего времени люди считали, что для решения головоломки требуется более двадцати ходов).[26] Это говорит о том, что в случае с кубиком Рубика существует лишь несколько путей, ведущих к совершенному порядку, и эти пути, короткие они или длинные, редки, поскольку они скрываются среди огромного количества путей, которые уводят прочь от упорядоченного состояния. Таким образом, увеличение энтропии можно сравнить с кубиком Рубика, который находится в руках ребенка. В природе информация встречается нечасто не только потому, что информационно насыщенные состояния являются редкостью, но и потому, что они недоступны в свете того, как природа исследует возможные состояния.
Но каковы же свойства информационно насыщенных состояний? И как мы можем использовать знания об их свойствах для их идентификации? Одной из важных характеристик информационно насыщенных состояний является то, что они подразумевают наличие длинномасштабных и короткомасштабных корреляций. В случае с кубиком Рубика эти корреляции очевидны:[27] когда кубик находится в идеально упорядоченном состоянии, каждый квадратик того или иного цвета находится в окружении максимально возможного количества квадратиков того же цвета. Однако бросающиеся в глаза корреляции встречаются не только в таких созданных человеком объектах, как кубик Рубика, но и в природе. Рассмотрим цепь ДНК, содержащую длинную последовательность нуклеотидов (А, С, Т и G). Цепочки ДНК являются очень длинными и, несмотря на все крупные научные достижения, мы до сих пор не знаем, за что отвечает большая часть последовательностей ДНК. Тем не менее мы можем определить информационно насыщенные фрагменты ДНК. Простейший способ выявления информации заключается в сравнении цепи ДНК со случайной последовательностью нуклеотидов (с последовательностью, в которой A, С, Т и G выбираются путем бросания четырехгранной игральной кости). Сравнивая существующую последовательность ДНК со случайной последовательностью, мы можем выявить необычные фрагменты ДНК, подразумевая, что они не должны появиться, учитывая то, что мы могли бы ожидать от случайной последовательности. Эти необычные последовательности включают неожиданные корреляции между соседними нуклеотидами (они «произносят слова»), а также корреляции между нуклеотидами, расположенными далеко друг от друга (они «произносят абзацы и главы» и «ссылаются» на «слова», которые были использованы ранее). В итоге эти корреляции обнаруживают существование информации в ДНК, поскольку они говорят нам, что найденные в ДНК последовательности не являются такими комбинациями, к которым можно было бы прийти, исследуя пространство последовательностей случайным образом. Скорее они являются редкими последовательностями, которые были найдены, сохранены, отточены и расширены в процессе эволюции.[28] Кроме того, пример с ДНК говорит нам о том, что наличие информации не зависит от нашей способности ее декодировать. Порядок в ДНК не является повторным введением значения в определение информации. Мы можем обнаружить существование информации в ДНК, хотя и испытываем затруднения при попытке понять, что многие из этих последовательностей означают и за что отвечают. Таким образом, мы не путаем информацию со смыслом и не ищем информацию, которая находится в глазах смотрящего. Корреляции, характеризующие информацию, которая передается в процессе человеческого общения (например, на английском языке) или с помощью биологических форм связи (например, ДНК) присутствуют вне зависимости от того, можем мы их декодировать или нет. Они являются характеристикой информационно насыщенных состояний, а не того, кто их наблюдает. Это говорит нам о том, что, когда дело доходит до коммуникации, значение «едет верхом» на бессмыслице. Наша способность передавать осмысленные сообщения основывается на существующих бессмысленных формах физического порядка. Эти бессмысленные формы порядка и представляют собой информацию.[29]