Топ за месяц!🔥
Книжки » Книги » Домашняя » Код креативности. Как искусственный интеллект учится писать, рисовать и думать - Маркус Дю Сотой 📕 - Книга онлайн бесплатно

Книга Код креативности. Как искусственный интеллект учится писать, рисовать и думать - Маркус Дю Сотой

11
0
На нашем литературном портале можно бесплатно читать книгу Код креативности. Как искусственный интеллект учится писать, рисовать и думать - Маркус Дю Сотой полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 88 89
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 18 страниц из 89

Bokde Dheeraj, Sheetal Girase and Debajyoti Mukhopadhyay. Matrix Factorization Model in Collaborative Filtering Algorithms: A Survey // Procedia Computer Science. 2015. Vol. 49. P. 136–146.

Briot Jean-Pierre and François Pachet. Music Generation by Deep Learning: Challenges and Directions // arXiv:1712.04371 (2017).

Briot Jean-Pierre, Gaëtan Hadjeres and François Pachet. Deep Learning Techniques for Music Generation: A Survey // arXiv:1709.01620 (2017). Brown Tom B., et al. Adversarial Patch // arXiv:1712.09665 (2017).

Cavallo Flaminia, Alison Pease, Jeremy Gow and Simon Colton. Using Theory Formation Techniques for the Invention of Fictional Concepts // Proceedings of the Fourth International Conference on Computational Creativity (2013).

Clarke Eric F. Imitating and Evaluating Real and Transformed Musical Performances // Music Perception: An Interdisciplinary Journal. 1993. Vol. 10. P. 317–341.

Colton Simon. Refactorable Numbers: A Machine Invention // Journal of Integer Sequences. 1999. Vol. 2. Article 99.1.2.

–. The Painting Fool: Stories from Building an Automated Painter // Jon McCormack and Mark d’Inverno (eds.). Computers and Creativity. Springer, 2012. – and Stephen Muggleton. Mathematical Applications of Inductive

Logic Programming // Machine Learning. 2006. Vol. 64 (1). P. 25–64. – and Dan Ventura. You Can’t Know My Mind: A Festival of Computational Creativity // Proceedings of the Fifth International Conference on Computational Creativity (2014). – , et al. The «Beyond the Fence» Musical and «Computer Says Show»

Documentary // Proceedings of the Seventh International Conference on Computational Creativity (2016). d’Inverno Mark and Arthur Still. A History of Creativity for Future AI Research // Proceedings of the Seventh International Conference on

Computational Creativity (2016). du Sautoy Marcus. Finitely Generated Groups, p-Adic Analytic Groups and

Poincaré Series // Annals of Mathematics. 1993. Vol. 137. P. 639–670. du Sautoy Marcus. Counting Subgroups in Nilpotent Groups and Points on

Elliptic Curves, J. reine angew // Math. 2002. 549. P. 1–21. Ebcioglu Kemal. An Expert System for Harmonizing Chorales in the Style of

J.S. Bach // Journal of Logical Programming. 1990. Vol. 8. P. 145–185. Eisenberger Robert and Justin Aselage. Incremental Effects of Reward on

Experienced Performance Pressure: Positive Outcomes for Intrinsic

Interest and Creativity // Journal of Organizational Behavior. 2009.

30 (1). P. 95–117. Elgammal Ahmed and Babak Saleh. Quantifying Creativity in Art Networks // Proceedings of the Sixth International Conference on Computational Creativity (2015).

– and —. Large-Scale Classification of Fine-Art Paintings: Learning the Right Metric on the Right Feature // arXiv: 1505.00855 (2015).

Elgammal Ahmed, et al. CAN: Creative Adversarial Networks Generating «Art» by Learning about Styles and Deviating from Style Norms // arXiv:1706.07068 (2017).

Ferrucci David A. Introduction to «This is Watson» // IBM Journal of Research and Development. 2012. Vol. 56 (3.4), 1.1–1.15.

Ganesalingam Mohan and W.T. Gowers. A Fully Automatic Theorem Prover with Human-Style Output // Journal of Automated Reasoning. 2016. Vol. 58 (2). P. 253–291.

Gatys Leon A., Alexander S. Ecker and Matthias Bethge. A Neural Algorithm of Artistic Style // arXiv:1508.06576 (2015).

Gondek David, et al. A Framework for Merging and Ranking of Answers in DeepQA // IBM Journal of Research and Development. 2012. Vol. 56 (3.4). 14:1–14:12.

Gonthier Georges. A Computer-Checked Proof of the Four Colour Theorem // Microsoft Research Cambridge (2005).

–. Formal Proof: The Four-Color Theorem // Notices of the AMS. 2008. Vol. 55. P. 1382–1393.

–, et al. A Machine-Checked Proof of the Odd Order Theorem // Interactive Theorem Proving, Proceedings of the Fourth International Conference on ITP (2013).

Goodfellow Ian J. NIPS2016 Tutorial: Generative Adversarial Networks // arXiv:1701.00160 (2016).

Guzdial Matthew J., et al. Crowdsourcing Open Interactive Narrative // Tenth International Conference on the Foundations of Digital Games (2015).

Hadjeres Gaëtan, François Pachet and Frank Nielsen. DeepBach: A Steerable Model for Bach Chorales Generation // arXiv:1612.01010 (2017).

Hales Thomas, et al. A Formal Proof of The Kepler Conjecture // Forum of Mathematics, Pi. Vol. 5. e2 (2017).

Hermann Karl Moritz, et al. Teaching Machines to Read and Comprehend // Advances in Neural Information Processing Systems. NIPS Proceedings (2015).

Ilyas Andrew, et al. Query-Efficient Black-Box Adversarial Examples // arXiv:1712.07113 (2017).

Khalifa Ahmed, Gabriella A.B. Barros and Julian Togelius. DeepTingle // arXiv:1705.03557 (2017).

Koren Yehuda, Robert M. Bell and Chris Volinsky. Matrix Factorization Techniques for Recommender Systems // Computer Journal. 2009. Vol. 42 (8). P. 30–37.

Li Boyang and Mark O. Riedl. Scheherazade: Crowd-Powered Interactive Narrative Generation // 29th AAAI Conference on Artificial Intelligence (2015).

Llano Maria Teresa, et al. What If a Fish Got Drunk? Exploring the Plausibility of Machine-Generated Fictions // Proceedings of the Seventh International Conference on Computational Creativity (2016).

Loos Sarah, et al. Deep Network Guided Proof Search // arXiv: 1701.06972v1 (2017).

Mahendran Aravindh and Andrea Vedaldi. Understanding Deep Image Representations by Inverting Them // Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015. P. 5188–5196.

Mathewson Kory Wallace and Piotr W. Mirowski. Improvised Comedy as a Turing Test // arXiv:1711.08819 (2017).

Matuszewski Roman and Piotr Rudnicki. MIZAR: The First 30 Years // Mechanized Mathematics and Its Applications. 2005. Vol. 4. P. 3–24.

Melis Gábor, Chris Dyer and Phil Blunsom. On the State of the Art of Evaluation in Neural Language Models // arXiv:1707.05589v2 (2017).

Mikolov Tomas, et al. Efficient Estimation of Word Representations in Vector Space // arXiv:1301.3781 (2013).

Mnih Volodymyr, et al. Playing Atari with Deep Reinforcement Learning // arXiv:1312.5602v1 (2013).

Ознакомительная версия. Доступно 18 страниц из 89

1 ... 88 89
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Код креативности. Как искусственный интеллект учится писать, рисовать и думать - Маркус Дю Сотой», после закрытия браузера.

Комментарии и отзывы (0) к книге "Код креативности. Как искусственный интеллект учится писать, рисовать и думать - Маркус Дю Сотой"