Ознакомительная версия. Доступно 17 страниц из 81
class="p">32
Adrian. The Somatic Receiving Area.
33
Adrian E.D. The Physical Background of Perception. Oxford: Clarendon Press, 1946; Adrian. Afferent Areas; Adrian. The Somatic Receiving Area.
34
Adrian E.D. Afferent Discharges to the Cerebral Cortex from Peripheral Sense Organs. Journal of Physiology. 100 (1941): 159–91; Adrian. The Somatic Receiving Area.
35
Adrian. The Physical Background.
36
Craner S.L., Ray R.H. Somatosensory Cortex of the Neonatal Pig: I. Topographic Organization of the Primary Somatosensory Cortex (S1). Journal of Comparative Neurology. 306 (1991): 24–38.
37
Adrian. The Physical Background.
38
Adrian. The Physical Background.
39
Catania K.C., Remple M.S. Somatosensory Cortex Dominated by the Representation of Teeth in the Naked Mole-Rat Brain. Proceedings of the National Academy of Sciences of the United States of America. 99 (2002): 5692–97.
40
Catania K.C., Kaas J.H. The Unusual Nose and Brain of the Star-Nosed Mole. BioScience. 46 (1996): 578–86; Catania K.C., Remple F.E. Tactile Foveation in the Star-Nosed Mole. Brain, Behavior and Evolution. 63 (2004): 1–12.
41
Adrian. Afferent Areas.
42
Chapin J.K., Lin C.-S. Mapping the Body Representation in the SI Cortex of Anesthetized and Awake Rats. Journal of Comparative Neurology. 229 (1984): 199–213.
43
Lenschow C. et al. Sexually Monomorphic Maps and Dimorphic Responses in Rat Genital Cortex. Current Biology. 26 (2016): 106–13.
44
Bobrov E. et al. The Representation of SocialFacial Touch in Rat Barrel Cortex. Current Biology. 24 (2014): 109–15.
45
Shea G. Song Without Words: Discovering My Deafness Halfway Through Life. Boston: Da Capo Press, 2013.
46
Saenz M., Langers D.R.M. Tonotopic Mapping of Human Auditory Cortex. Hearing Research. 307 (2014): 42–52.
47
Penfild W., Perot P. The Brain’s Record of Auditory and Visual Experience: A Final Summary and Discussion. Brain. 86 (1963): 595–696.
48
Petkov C. et al. Encoding of Illusory Continuity in Primary Auditory Cortex. Neuron. 54 (2007): 153–65; Riecke L. et al. Hearing Illusory Sounds in Noise: Sensory-Perceptual Transformations in Primary Auditory Cortex. Journal of Neuroscience. 27 (2007): 12684–89.
49
“Как пришло, так ушло” или “Такова жизнь” (англ.). (Здесь и далее, если не указано иное, – прим. перев.)
50
Глаза, как, [он] владеет (англ.).
51
Shea. Song Without Words.
52
Kim H., Bao S. Experience-Dependent Overrepresentation of Ultrasonic Vocalization Frequencies in the Rat Primary Auditory Cortex. Journal of Neurophysiology. 110 (2013): 1087–96.
53
Hill J.E., Smith J.D. Bats: A Natural History. Austin: University of Texas Press, 1984.
54
Suga N., O’Neill W.E. Neural Axis Representing Target Range in the Auditory Cortex of the Mustache Bat. Science. 206 (1979): 351–53.
55
Chandrashekar J. et al. The Receptors and Cells for Mammalian Taste. Nature. 444 (2006): 288–94.
56
Yarmolinsky D.A. et al. Common Sense About Taste: From Mammals to Insects. Cell. 139 (2009): 234–44.
57
Choi N.-E., Han J.H. How Flavor Works: The Science of Taste and Aroma. West Sussex, UK: Wiley Blackwell, 2015.
58
Choi, Han. How Flavor Works.
59
Chandrashekar J. et al. The Cells and Peripheral Representation of Sodium Taste in Mice. Nature. 464 (2010): 297–302.
60
Mueller K. L. et al. The Receptors and Coding Logic for Bitter Taste. Nature. 434 (2005): 225–29.
61
Mueller et al. Receptors and Coding Logic.
62
Zhao G.Q. et al. The Receptors for Mammalian Sweet and Umami Taste. Cell. 115 (2003): 255–66.
63
Mueller et al. Receptors and Coding Logic.
64
Dutta T.M. et al. Altered Taste and Stroke: A Case Report and Literature Review. Topics in Stroke Rehabilitation. 20 (2013): 78–86.
65
Small D.M. Taste Representation in the Human Insula. Brain Structure and Function. 214 (2010): 551–61.
66
Mazzola L. et al. Gustatory and Olfactory Responses to Stimulation of the Human Insula. Annals of Neurology. 82 (2017): 360–70.
67
Chen X. et al. A Gustotopic Map of Taste Qualities in the Mammalian Brain. Science. 333 (2011): 1262–66.
68
Peng Y. et al. Sweet and Bitter Taste in the Brain of Awake Behaving Animals. Nature. 527 (2015): 512–15.
69
Этот метод искусственной активации нейронов называется оптогенетикой. Для того, чтобы светом определенной длины волны (например, синим или красным) активировать нейроны, эти нейроны должны содержать светочувствительные белки, каналородопсины (похожие на опсины нашей сетчатки). Эти белки в естественных условиях есть у водорослей и бактерий. Ученые выяснили структуру этих белков и кодирующих их генов и создали трансгенных мышей, у которых в нейронах появляются каналородопсины, так как геном этих мышей был изменен. Таким образом, в мозге трансгенных мышей оказываются светочувствительные нейроны, которые ученые и могут активировать (или тормозить) по своему желанию с помощью света лазера или диода. (Прим. ред.)
70
Accolla R. et al. Differential Spatial Representation of Taste Modalities in the Rat Gustatory Cortex. Journal of Neuroscience. 27 (2007): 1396–404; Fletcher M.L. et al. Overlapping Representation of Primary Tastes in a Defined Region of the
Ознакомительная версия. Доступно 17 страниц из 81