Ознакомительная версия. Доступно 17 страниц из 81
карту, которая отображает зрительную информацию при помощи электричества и времени. На рис. 5 показано, где спрятана область V1 и как выглядит на ней зрительное изображение. Именно эту карту продырявили пули у пациентов Иноуэ, оставив прорехи в поле зрения, хотя оба глаза у них функционировали нормально.
Существование такой карты в нашем мозге может показаться странным и неправдоподобным. Однако такие карты, как V1, являются не исключением, а правилом. Мозг больших и маленьких существ переполнен подобными картами. В последующих главах мы поговорим об их замечательном разнообразии и о том, как их особенности и искривления формируют наши мысли и опыт. Но сначала нужно ответить на важнейший вопрос: зачем мозгу столько карт? Ответ можно найти в устройстве электронных приборов и в эволюции, и связан он со столь разными темами, как голодный мозг и фантастическая способность примитивного пустынного муравья ориентироваться в пространстве. Вы увидите, что на самом деле невероятной является наша способность вообще что-либо видеть. Такие зрительные карты, как в области V1, являются решением проблемы, о существовании которой вы никогда даже не подозревали. Они уникальным образом обеспечивают нас зрением и другими чувствами в мире голода, дефицита и хищничества.
Рис. 5. Отображение зрительной информации в левой и правой частях зрительной карты V1 у человека. Художник Пол Ким.
2
Тирания чисел: зачем нужны карты мозга?
Инженеров из Лаборатории Белла не интересовал мозг. Их интересовало создание полезных устройств. Однако в конце 1950-х годов Лаборатория Белла и зарождавшаяся электронная промышленность столкнулись с той же проблемой, которая на миллионы лет затормозила эволюцию мозга и сделала карты мозга биологическим императивом.
Тогдашний вице-президент Лаборатории Белла дал проблеме название: тирания чисел[5]. Электрические устройства функционируют благодаря внутренним электрическим компонентам, которые обеспечивают их главные функции. Потребители хотели иметь более мощные и многофункциональные устройства, чтобы один и тот же аппарат мог выполнять несколько функций. И поэтому инженеры пытались создавать новые устройства, состоящие из огромного количества деталей. Непросто придумать, как упаковать миллион деталей внутри устройства разумного размера. Но добавление деталей влечет за собой и еще более сложную проблему: при присоединении каждого нового элемента инженер должен встроить массу новых проводов, соединяющих его с другими элементами устройства. Эту проблему и назвали тиранией чисел. Повышение мощности и функциональности устройства требовало дополнительных элементов, но чем больше элементов, тем больше проводов, а это повышало стоимость производства и увеличивало размер устройства.
Результат? Неуклюжие машины из чудовищного набора деталей.
Решение проблемы тирании чисел пришло из другой сферы. Его предложил Джек Килби из компании “Тексас инструментс”: он придумал интегральную схему, позволявшую инженерам включить множество элементов в единственную деталь из германия, что очень сильно сократило количество проводов. Роберт Нойс из компании “Фэйрчайлд семикондактор” в Маунтин-Вью в Калифорнии изобрел кремниевую версию интегральной схемы, которая заложила основы и дала название Силиконовой долине в том виде, в котором мы знаем ее сегодня. Интегральные схемы позволили включать в устройство больше элементов. Эти инновации положили начало современной эре электроники и позволили создавать мощные многофункциональные мобильные устройства, определяющие нашу современную жизнь.
Однако тирания чисел не исчезла полностью. Перенеситесь в сегодняшний день и подумайте о мобильном телефоне, который наверняка сопровождает вас повсюду. Многие мобильные телефоны являются многофункциональными: это одновременно телефон, фотокамера и плейер, на нем можно слушать музыку, смотреть фильмы и играть в видеоигры. Чипы современных мобильных телефонов содержат миллиарды транзисторов и многочисленные элементы, позволяющие им осуществлять столь разные функции. Но при этом мобильные телефоны должны быть легкими и достаточно компактными, чтобы помещаться в карман или сумочку. Эти конфликтующие факторы – больше функций в меньшем объеме – будут оставаться источником головной боли (и рабочих мест) для инженеров еще долгое время.
Многие аспекты процесса создания современных мобильных телефонов связаны с вопросами, в равной степени относящимися и к головному мозгу. Какими свойствами должен обладать конечный продукт, чтобы быть функциональным, обрабатывать большие объемы информации и быстро решать задачи? Для чего служит каждая деталь устройства и как эти детали должны быть связаны друг с другом? Сколько будет стоить создание такого аппарата? Насколько компактным и легким должен быть конечный продукт?
В отличие от устройств, тщательно разработанных инженерами, структура мозга и его функции формировались на протяжении многих поколений за счет естественного отбора. Никто сознательно не подбирал критерии для построения мозга; на протяжении многих поколений генетические мутации, воспроизведение и смерть совместными усилиями оптимизировали структуру мозга живых существ методом проб и ошибок. И все же проще понять компромиссы в эволюции мозга, если рассматривать этот процесс как инженерную задачу. Что нужно, чтобы сконструировать мозг? Ответ зависит от того, что этот мозг должен уметь делать.
Когда люди рассуждают о способностях мозга (о способности обрабатывать информацию и поддерживать разумное поведение), они обычно делают это в терминах плохо и хорошо. В целом считается, что любого человека и любое существо можно расположить на определенной ступени интеллектуальной лестницы, так что простенькие оказываются у земли, а превосходные – в поднебесье. Однако более детальное и менее предвзятое исследование способностей животных показывает, насколько ошибочна такая позиция.
Рассмотрим в качестве примера пустынного муравья, который постоянно перемещается по суровой Сахаре в поисках чего-нибудь съедобного. По отношению к собственному размеру эти муравьи за день проделывают путь, который для нас составлял бы несколько километров, а затем находят дорогу домой по совершенно безликой пустыне точно в то место, где живет их колония. Другой пример – киты-убийцы, которые держатся группами (стадами) и общаются на диалекте, уникальном для каждого конкретного стада[6]. Когда стадо рассеивается и члены группы оказываются в нескольких километрах друг от друга, они должны “настроиться” на сигналы других китов, общающихся на этом диалекте, и игнорировать сообщения всех остальных. Это позволяет им отслеживать месторасположение собратьев и вновь объединяться. А птица, называемая щелкунчиком Кларка, каждую осень собирает сосновые семена и закапывает их в небольших норках[7]. Птица запоминает более трех тысяч таких тайников и проверяет их за зиму и весну, добывая пропитание для себя и своих птенцов.
Эти животные обладают мозгом с массой от 0,001 грамма (муравей) примерно до 3650 граммов (кит-убийца)[8], но способны на такие когнитивные подвиги, которые трудны или вовсе невозможны для нас с нашим мозгом массой около 1500 граммов. На удивление, многих живых существ можно назвать разумными, но они разумны только в каких-то определенных аспектах, необходимых для преодоления специфических трудностей. Разнообразие способностей, обеспечиваемых мозгом, у обитателей
Ознакомительная версия. Доступно 17 страниц из 81