Несмотря на различные математические модели описания теорий, общее понимание сил взаимодействия в теории S-матрицы очень схоже с таковым в теории поля. В обеих теориях силы проявляются в форме частиц, масса которых определяет радиус действия. Обе теории видят в этих силах имманентные свойства взаимодействующих частиц. В теории поля силы — отражение структуры виртуальных облаков частиц, а в теории S-матрицы они порождаются связанными состояниями взаимодействующих частиц. Обоснованная нами параллель с восточным толкованием понятия силы характерна для обеих этих теорий. Такой подход порождает важный вывод о том, что все известные частицы должны иметь внутреннюю структуру: только тогда они смогут вступать во взаимодействие с наблюдателем и быть идентифицированы им. Обратимся к объяснениям Джеффри Чу[235], одного из главных создателей теории S-матрицы.
Поистине элементарная частица — полностью лишенная внутренней структуры — не может быть подвержена действию каких-либо сил, которые могли бы помочь нам обнаружить ее существование. Уже из того факта, что нам известно о существовании частицы, следует сделать вывод о том, что эта частица обладает внутренней структурой![236]
Особое преимущество математического аппарата теории S-матрицы в том, что с его помощью можно описать «обмен» целой адронной семьи. Как говорилось в предыдущей главе, все адроны можно разделить на последовательности, для членов каждой из которых характерна полная идентичность всех свойств, за исключением массы и спина. Математическая модель, впервые предложенная Туллио Редже[237], позволяет рассматривать каждую из этих последовательностей как множество возбужденных состояний одного адрона. В 1970-е ученым удалось объединить модель Редже с теорией S-матрицы, в которой ее стали успешно применять для описания адронных реакций. Введение в научный обиход этой математической модели — один из самых важных моментов в развитии теории S-матрицы, он может расцениваться как первый шаг к объяснению паттернов частиц.
Теория S-матрицы позволяет физикам динамически описывать строения адронов, силы взаимодействия между ними и некоторые паттерны, которые они образуют. При этом каждый адрон понимается как неотделимая часть неразрывной цепи взаимодействий. Основная задача теории S-матрицы — применить это динамическое описание для объяснения симметрий, порождающих адронные паттерны и законы сохранения, которым была посвящена предыдущая глава. В новой теории адронные симметрии должны отразиться в математической модели S-матрицы так, чтобы она содержала только те элементы, которые соответствуют реакциям, возможным с точки зрения законов сохранения. Тогда они утратили бы свой теперешний статус чисто эмпирических закономерностей, став логическим следствием теории S-матрицы, а следовательно, и динамической природы адронов.
Физики пытались решить эту задачу путем постулирования нескольких общих принципов, которые ограничивают математические возможности построения элементов S-матрицы, придавая последней более четкую структуру. Уже сформулировано три таких принципа. Первый из них — следствие теории относительности и наших обычных макроскопических представлений о времени и пространстве. Он гласит: вероятности реакций (а следовательно, и элементы S-матрицы) не должны зависеть от переносов экспериментального оборудования в пространстве и времени, его пространственной ориентации и состояния движения наблюдателя. Как говорилось в предыдущей главе, из факта независимости реакций частиц от изменений ориентации и переносов в пространстве и времени следует вывод о сохранении суммарного момента импульса, импульса и энергии, участвующих в реакции. Эти «симметрии» очень важны для науки. Если бы результаты эксперимента менялись в зависимости от времени и места его проведения, наука в ее современном понимании была бы невозможна. Последнее требование по поводу того, что результаты эксперимента не должны зависеть от состояния движения наблюдателя, представляет собой принцип относительности, лежащий в основе релятивистской теории.
Второй основополагающий принцип вытекает из квантовой теории. Согласно ему, исход реакции можно предсказать только в категориях вероятностей. Кроме того, сумма вероятностей всех возможных исходов — включая случай, когда взаимодействия между частицами не происходят, — должна равняться 1. Мы можем быть уверены в том, что частицы либо взаимодействуют, либо нет. Это, казалось бы, простое утверждение — очень важный принцип, получивший название «принципа унитарности», который значительно ограничивает возможности построения элементов S-матрицы.
Наконец, третий и последний принцип имеет отношение к нашим представлениям о причине и следствии и называется принципом причинности. Согласно ему, энергия и импульс могут переноситься в пространстве только при помощи частиц, причем тогда, когда частица создается во время одной реакции и исчезает во время другой, при условии, что последующая реакция происходит позже, чем предыдущая. Из математического выражения принципа причинности следует, что S-матрица находится в гладкой зависимости от энергий и импульсов частиц, участвующих в реакции, за исключением значений, при которых становится возможным возникновение новых частиц. При этих значениях математическая модель теории S-матрицы резко меняется: она начинает характеризоваться явлением, которое математики называют «математической сингулярностью»[238], или «особенностью». Каждый канал реакции содержит несколько таких «особенностей», есть несколько значений энергии и импульса для каждого канала, при которых могут образоваться новые частицы. Пример — упомянутые выше «резонансные энергии».
Тот факт, что S-матрица демонстрирует сингулярности, — следствие принципа причинности. Но он не указывает местоположения этих сингулярностей. Значения энергии и импульса, при которых могут возникать новые частицы, варьируют для разных каналов реакции в зависимости от масс и других характеристик образующихся частиц. Локализация сингулярностей отражает свойства частиц, а поскольку во время их реакций могут возникать любые адроны, сингулярности S-матрицы отражают все паттерны адронов и их симметрии.
Поэтому главная цель теории — вывести сингулярную структуру S-матрицы из общих принципов. До сих пор математической модели, которая могла бы удовлетворить требованиям всех трех принципов, создать не удалось. Возможно, их вполне достаточно для исчерпывающего описания всех свойств S-матрицы, а значит, и адронов[239]. Если это правда, то философские следствия такой теории будут иметь колоссальное значение. Каждый из трех принципов связан с нашими методами организации наблюдений и измерений окружающего мира, т. е. с нашим научным подходом. Если их достаточно для выявления структуры адронов, это значит, что базовые составные части структуры физического мира определяются только тем, как мы смотрим на мир. Любое существенное изменение в наших методах наблюдения приведет к корректировке основополагающих принципов, что повлечет за собой изменение структуры S-матрицы, а значит, и понимания структуры адронов.