Ознакомительная версия. Доступно 14 страниц из 69
Корпускулярно-волновой дуализм — один из основополагающих квантовых принципов, согласно которому любой микрообъект одновременно обладает волновыми и корпускулярными свойствами. При измерениях, в зависимости от их характера, проявляются либо та, либо иная сторона объекта.
Коллапс (гравитационный) – явление быстрого катастрофического сжатия массивного тела под действием собственного гравитационного поля. Если масса звезды превышает две солнечные, то в конце своего жизненного пути светило может коллапсировать при исчерпании своего ядерного горючего. При этом звезда стремительно теряет свою механическую устойчивость и с увеличивающейся скоростью «падает» к центру. После того как радиус светила уменьшится до некоторого граничного значения – «гравитационного радиуса», никакие силы уже не могут воспрепятствовать дальнейшему сжатию, и коллапсар превращается в черную дыру застывшей (или «замерзшей») звезды.
Нейтрино — стабильная незаряженная частица с полуцелым спином и сверхмалой массой; отличается очень высокой проницаемостью, участвуя только в слабых и гравитационных взаимодействиях.
Нейтрон – электрически нейтральная элементарная частица, входящая наряду с протонами в состав атомных ядер. Открыт в 1932 г. Дж. Чедвиком. Нейтроны устойчивы только в составе стабильных атомных ядер. Свободные нейтроны нестабильны и распадаются на протоны, электроны и антинейтрино по схеме бета-распада. Среднее время жизни свободного нейтрона – 15,3 минуты, а период полураспада – 10,603 минуты. Из-за сильного поглощения свободных нейтронов атомными ядрами среднее время жизни нейтрона в плотном веществе не превышает сотни микросекунд.
Отсутствие у нейтронов электрического заряда приводит к тому, что они взаимодействуют непосредственно с атомными ядрами, либо вызывая ядерные реакции, либо рассеиваясь на ядрах. Характер и интенсивность взаимодействия пучка нейтронов с веществом существенно зависят от энергии нейтрона. Медленные нейтроны в основном упруго рассеиваются на атомных ядрах или вызывают ядерные реакции типа радиационного захвата. С участием медленных нейтронов возможны также экзотермические ядерные реакции или деление атомных ядер. Для снижения энергии нейтронов используют различные замедлители нейтронов (графит, вода и т. д.), ядра которых не поглощают нейтроны.
Для исследований строения вещества используют тепловые нейтроны, энергия которых сравнима с энергией тепловых колебаний атомов в твердом теле и при рассеянии которых на монокристаллах наблюдается явление дифракции. Наличие у нейтронов магнитного дипольного момента вызывает их рассеяние на атомах и дает возможность изучать магнитную структуру материалов. Для регистрации нейтронов применяют детекторы, в материале которых нейтроны вызывают ядерные реакции, сопровождающиеся образованием регистрируемых вторичных заряженных частиц.
Нейтронные пучки используются в синтезе радионуклидов, получении трансурановых элементов, методах тонкого химического анализа, горном деле и нейтронной авторадиографии. В земной атмосфере свободные нейтроны непрерывно образуются при взаимодействии космических частиц с ядрами атомов воздуха. Эти нейтроны приводят к непрерывному образованию в атмосфере радиоактивного углерода, на чем основан радиоуглеродный метод геохронологии.
Нуклоны — частицы, входящие в состав атомных ядер – протоны и нейтроны.
Планковская длина (масштаб) – расстояние порядка 10–33 см, на котором нулевые квантовые колебания гравитационного поля полностью искажают геометрию пространства-времени.
Позитрон – самая легкая элементарная частица с положительным электрическим зарядом, являющаяся античастицей по отношению к электрону. Массы и спины позитрона и электрона равны, а их электрические заряды и магнитные моменты равны по величине и противоположны по знаку. Позитрон (как и электрон) является фермионом, относится к классу лептонов и участвует в электромагнитном, слабом и гравитационном взаимодействиях. В пустоте позитрон стабилен. Однако в веществе существует короткое время, поскольку, сталкиваясь с электроном, исчезает вместе с ним, превращаясь в два гамма-кванта. Это явление называется аннигиляцией. Существование позитрона было предсказано П. Дираком в 1931 г., а в 1932 г. К. Д. Андерсон обнаружил позитрон в космических лучах.
Протон – стабильная положительная элементарная частица, входящая в состав всех атомных ядер, одновременно являясь ядром атома самого легкого нуклида водорода – протия. Масса протона приблизительно в 1836 раз больше массы покоя электрона и немного меньше массы нейтрона. Электрический заряд протона по абсолютной величине равен заряду электрона.
Число протонов в ядре атома данного химического элемента равно атомному номеру этого элемента и определяет его место в периодической системе химических элементов. Соответственно, все химические свойства простых веществ и соединений, образуемых данным элементом, связаны с числом протонов в ядре атома. Термин «протон» ввел Э. Резерфорд в начале 20-х гг. прошлого века.
Согласно классификации элементарных частиц, протон относится к адронам; он входит в класс тяжелых частиц – барионов (протон – самый легкий из барионов). Протон участвует в сильных взаимодействиях, а также во всех других фундаментальных взаимодействиях: электромагнитном, слабом и гравитационном. В сильном взаимодействии протон и нейтрон имеют идентичные свойства и рассматриваются как различные квантовые состояния одной элементарной частицы – нуклона. За счет слабых взаимодействий в радиоактивных ядрах возможно превращение протона в нейтрон, позитрон и нейтрино, а также превращение нейтрона в протон, электрон и антинейтрино. Стабильность протонов позволяет использовать их как бомбардирующие частицы для осуществления ядерных реакций.
Рентгеновское излучение – электромагнитные волны в энергетическом диапазоне между ультрафиолетовым излучением и гамма-лучами. Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жесткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жесткий рентген используется преимущественно в промышленных целях. Рентгеновские лучи возникают при сильном ускорении заряженных частиц, порождающем тормозное излучение, либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод. В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. За счет тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимают другие электроны атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий. В настоящее время аноды изготавливаются главным образом из керамики, причем та их часть, куда ударяют электроны, – из молибдена или меди.
Ознакомительная версия. Доступно 14 страниц из 69