Кешелава
https://nplus1.ru/news/2019/03/20/dark-matter-superconducting-nanowire
Препринт на сервере arXiv.org.
https://arxiv.org/abs/1903.05101
Глава 11-14-8
Темную материю предложили искать с помощью «снежковой камеры»
Апрель 2019
Американские физики предложили ловить легкие частицы темной материи с помощью переохлажденной воды. Чтобы доказать целесообразность такого подхода, ученые два года измеряли отклик переохлажденной воды на различные источники частиц — в результате исследователи доказали, что детектор хорошо чувствует рассеяние частиц на ядрах водорода и практически не замечает ионизирующее излучение. Ученые предложили назвать гипотетический детектор «снежковой камерой» по аналогии с пузырьковой камерой. О своей новой разработке физики сообщили на апрельской встрече Американского физического сообщества, препринт выложен на сайте arXiv.org.
В обычных условиях вода замерзает при нуле градусов по Цельсию, однако ее можно охладить до гораздо более низкой температуры. Дело в том, что сама по себе жидкость замерзнуть не может — чтобы запустить этот процесс, в ней должны быть неоднородности, с которых начнут расти ледяные кристаллы. Следовательно, если тщательно очистить воду от примесей, медленно понижать температуру и беречь ее от внешних воздействий, она будет оставаться жидкой при температурах вплоть до −48 градусов Цельсия. При еще более низких температурах равновесие в жидкости не успевает устанавливаться из-за неустранимых тепловых колебаний. Если же потрясти переохлажденную воду или бросить в нее крупинку соли, она резко начнет кристаллизоваться по всему своему объему. Более того, в результате замерзания переохлажденной воды высвобождается энергия плавления льда — следовательно, чтобы запустить переход, практически не требуется затрачивать энергию. Поэтому такую систему называют метастабильной.
Благодаря низкому энергетическому порогу метастабильные системы можно использовать в качестве детекторов частиц. Собственно, первый в истории человечества детектор, камера Вильсона, работал именно по этому принципу — только вместо переохлажденной воды в нем использовался перенасыщенный пар.
Группа физиков под руководством Мэтью Шидагиса (Matthew Szydagis) предложила идею нового детектора, основанного на кристаллизации переохлажденной жидкости. Они рассмотрели эту идею по нескольким причинам. Во-первых, молекулы воды содержат легкие молекулы водорода, которые идеально подходят для поиска частиц темной материи массой порядка одного гигаэлектронвольта. Во-вторых, в настоящее время существуют методики, с помощью которых можно быстро и дешево очистить сравнительно большие объемы воды. В-третьих, в отличие от пузырьковой камеры, кристаллизация воды не приводит к резкому изменению давления, поэтому оставшийся объем жидкости продолжает следить за столкновениями частиц. По аналогии с «туманной» и пузырьковой камерой физики предлагают назвать гипотетический детектор «снежковой камерой» (snowball camera).
Ученые считают, что детектор, построенный на основе этой технологии будет сравним с существующими детекторами на основе пузырьковой камеры. Детектор массой сто килограмм, работающий на протяжении трех месяцев, будет на два порядка превосходить рекордную чувствительность детектора DarkSide.
nplus1.ru, 15 апреля 2019, Дмитрий Трунин
https://nplus1.ru/news/2019/04/15/snowball-chamber
Сайт arXiv.org. 2018
Мэтью Шидагис (Matthew Szydagis)
https://arxiv.org/abs/1807.09253
Глава 11-14-9
Поляризация света протопланетных дисков укажет на аксионы
Май 2019
Японские физики предложили новый метод поиска аксионов, основанный на колебаниях поляризации протопланетных дисков. Ученые вывели уравнение, которое связывает угол отклонения поляризации, массу аксиона и константу его связи с фотоном, а затем подставили в него значения, отвечающие диску вокруг звезды AB Возничего. Статья опубликована в Physical Review Letters, препринт на сайте arXiv.org.
Раньше основным кандидатом на роль темной материи выступали вимпы (WIMP) — сверхтяжелые частицы с массой не меньше десяти масс протона, которые взаимодействуют с частицами обычной материи через обмен векторными бозонами (фотоны в таких реакциях не рождаются, поэтому материя выглядит «темной»). Однако из-за отсутствия экспериментальных подтверждений эта гипотеза постепенно стала терять популярность. Более того, теория с вимпами приводит к расхождениям между расчетами и наблюдаемой картиной распределения темной материи (проблема острого гало). Некоторые физики попытались объяснить неудачи экспериментов по поиску вимпов новыми короткодействующими силами или отказались от темной материи, заменив ее частицами с отрицательной массой.
Менее радикальные теории предполагают, что темная материя состоит из сверхлегких аксионоподобных частиц. Кроме того, похожие сверхлегкие частицы естественным образом возникают в теории струн.
Основные свойства, на которые полагаются такие эксперименты — это взаимодействие аксионов с фотонами и осцилляция аксионного поля с частотой, пропорциональной его массе. Эти свойства приводят к двум интересным эффектам. Во-первых, аксионы, помещенные в сильное магнитное поле, превращаются в фотоны. Во-вторых, на фоне осциллирующего аксионного фона плоскость поляризации фотонов поворачивается и лучи света расщепляются. Первый эффект используется в галоскопе — «радио» для темной материи, в котором физики пытаются подобрать резонансную частоту магнитного поля и усилить рождение фотонов. В настоящее время такие установки уже работают. Схема эксперимента, основанного на втором эффекте, была разработана группой японских ученых под руководством Юта Митимура (Yuta Michimura), однако воплотить ее в жизнь пока не удалось.
Теперь же японские исследователи во главе с Кендзи Тома (Kenji Toma) предложили косвенный метод детектирования аксионов, основанный на измерении поляризации протопланетных дисков. Протопланетные диски выбрали по ряду причин. Во-первых, большая часть излучения диска возникает из-за рассеяния света центральной звезды на его частицах (поэтому диск кажется ярким). Во-вторых, свет протопланетного диска линейно поляризован перпендикулярно его плоскости. И если окружающая диск темная материя состоит из аксионов, она будет изменять его поляризацию предсказуемым способом. Наконец, характерный размер протопланетного диска составляет порядка ста астрономических единиц. С одной стороны, это позволяет разрешить диски на расстоянии до ста парсек с помощью наземных телескопов. С другой стороны, даже такой огромный диаметр меньше длины волны де Бройля аксиона — следовательно, поляризация всего диска будет поворачиваться одинаково.
nplus1.ru, 17 мая 2019, Дмитрий Трунин
https://nplus1.ru/news/2019/05/17/proto-axion
ЖурналPhysical Review Letters, 2019
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.191101
https://arxiv.org/abs/1811.03525
Глава 11-14-10
Гравитационные интерферометры попытаются поймать легкие частицы темной материи
Сентябрь 2019
Японские физики предложили использовать гравитационные детекторы для поиска частиц темной материи. Предполагается, что при столкновениях с гипотетическими частицами зеркала детекторов должны немного отклоняться. По словам ученых, с помощью нового метода можно ужесточить ограничения на сечение рассеяния легких темных частиц, масса которых не превышает одной пятой от массы протона. Препринт доступен на сайте arXiv.org.
Когда сквозь Землю проходит гравитационная волна, все ее объекты практически незаметно растягиваются и сжимаются. Например, если волна была испущена при слиянии двух черных дыр с массой порядка нескольких масс Солнца, то относительное изменение