Ознакомительная версия. Доступно 17 страниц из 81
Относительная масса пыли в межзвездном пространстве Галактики тоже незначительна и составляет всего один процент от массы газа и одну десятитысячную долю массы Галактики. Однако и этой пыли хватает, чтобы значительно ослабить свет.
Межзвездные пылинки, как показали исследования, не просто однородная масса: в их составе были обнаружены соединения углерода, кремния, замерзшие газы, водяной лед, а также простейшие органические молекулы.
В целом же в ходе многочисленных сравнительных наблюдений было установлено, что межзвездная пыль представлена двумя видами частиц: углеродными и силикатными, то есть содержащими соединения кремния.
Как же ученые изучают космическую пыль? В этом им помогает поляризация света. От каждой звезды в космическое пространство обычно распространяются волны во всех направлениях. И когда на пути светового потока появляется сферическая пылинка, все волны она поглощает одинаково.
Когда же пылинка имеет удлиненную форму, то есть вытянута вдоль оси, то волны, параллельные этой оси, поглощаются сильнее, чем падающие на поверхность пылинки перпендикулярно. Иначе говоря, излучение становится поляризованным. И как раз-то степень поляризации света, исходящего от звезд, и дает информацию о размерах и форме пылинок.
Размеры же пылинок варьируют в довольно широких пределах: от одной миллионной до одной десятитысячной доли сантиметра. Но все-таки в общей массе преобладают мелкие пылинки.
Оба типа пылинок, то есть графитовые и силикатные, формируются в наружных оболочках старых холодных звезд.
Когда звезда стареет, она постепенно теряет и вес. А газообразное вещество, покидающее звезду, с расстоянием остывает. И когда его температура становится меньше температуры плавления вещества, составляющего пылинку, молекулы газа начинают «объединяться» в миниатюрные «комки», образуя зародыши пылинок.
В первое время жизни частичка увеличивается в размерах очень медленно. Но когда температура начинает падать, рост пылинки ускоряется. Длится этот процесс ее «развития» несколько десятилетий. А когда газ достигает высокой степени разрежения, рост частичек прекращается.
Часто пылинки вкупе с газом концентрируются в облака, плотность вещества в которых иногда в миллионы раз выше окружающего пространства.
«Юная» пылинка имеет сравнительно простое строение. В связи с тем, что окружающее пылинку пространство особым разнообразием не отличается, ее химический состав и строение тоже относительно примитивны.
Так, химия микроскопической частички напрямую определяется тем элементом, который превалировал в оболочке звезды, то есть кислородом или углеродом. Связано это с тем, что в процессе охлаждения вещества, «покинувшего» звезду, углерод и кислород соединяются в прочные молекулы окиси углерода.
Так вот, когда после этого остаются излишки углерода, формируются графитовые частицы. И наоборот, если весь углерод окажется в окиси углерода, то избыточный кислород соединится с кремнием, и в результате появятся силикатные пылинки. Это, можно сказать, моногамные частицы, то есть состоящие из однородного вещества, которые формируются в очень разреженном пространстве.
Но когда плотность межзвездного газа достигает тысяч атомов на кубический сантиметр, пылинки ведут себя уже совсем по-другому: на их поверхности появляется оболочка из легкоплавких соединений, которые представлены чаще всего замерзшей водой, формальдегидом и аммиаком. То есть иначе говоря, пылинка «одевается» в ледяную корку.
Но поскольку этот «лед» сам по себе довольно хрупок, то при внешнем излучении и взаимных соударениях пылинок он преобразуется в более устойчивые органические соединения, образующие вокруг частицы особую пленку.
И третий тип пылинок появляется в настолько плотных молекулярных облаках, что звездное излучение туда уже не может проникнуть. А раз так, то и лед на поверхности пылинок не разрушается. В этом случае они состоят из трех слоев: ядра, слоя из органических соединений и ледяной корки.
Существует гипотеза, согласно которой такие частички, сконденсировавшись в громадные комья, формируют ядра комет-реликтов, которые образовались еще тогда, когда Солнечная система представляла собой плотное непрозрачное облако…
Круговорот вещества во Вселенной
Итак, нам уже известно, что в разных областях межзвездного пространства плотность газа и пыли очень неравномерна. В некоторых же местах эти вещества скапливаются в более концентрированные структуры, образуя гигантские облака и сверхоблака.
Однако межзвездный газ – это не просто разреженное вещество, представленное атомным и молекулярным водородом, а материал, из которого формируются новые звезды. А происходит этот процесс следующим образом. Сначала в некоторых зонах газового облака в результате сил гравитации появляются плотные сгустки вещества – зародыши новых звезд.
Образовавшийся «комок» продолжает сжиматься. И длится этот процесс до тех пор, пока в центре этого сгустка температура и плотность не поднимутся до той критической отметки, после которой начинаются термоядерные реакции, в ходе которых водород превращается в гелий. Как только эти процессы пойдут, сгусток газа становится звездой.
Кроме газа, активную роль в образовании звезд играет и межзвездная пыль. Именно благодаря ей газ быстрее остывает. Связано это, во-первых, с тем, что пыль поглощает выделяющуюся во время сжатия облака энергию; во-вторых, эту энергию она перераспределяет по другим диапазонам спектра, тем самым влияя на энергетический обмен между звездой и окружающим пространством. И от того, каковы свойства пыли, а также какое ее количество в протозвездном облаке, зависит, сколько звезд в нем появится, а также каковой будет их масса.
Раскаленное облако межзвездного газа, похожее на пламя огня от костра и названное «Хаббл-V»
Когда в той или иной области молекулярного облака появились звезды, то они уже начинают оказывать существенное влияние на окружающий их газ. Это влияние проявляется в том, что начинают также уплотняться и соседние газовые облака, что приводит к формированию в них новых звезд.
То есть звездообразование в молекулярных облаках подобно цепной реакции: оно сначала «вспыхивает» в одной области облака, а затем постепенно охватывает другие его участки, а также примыкающие облака. В ходе этого процесса межзвездный газ превращается в звезды.
В конце концов наступает такой момент, когда весь водород в центре звезды превращается в гелий. А это значит, что и ядерные реакции горения водорода тоже затухают. После этого центральная часть звезды начинает уплотняться, а ее наружные области – расширяться.
В дальнейшем своем эволюционном развитии звезда сбрасывает свою наружную оболочку или же взрывается, в результате чего газ, из которого она была сформирована, снова возвращается в межзвездное пространство.
Ознакомительная версия. Доступно 17 страниц из 81