Новое изобилие – это в первую очередь поиск возможности драматического снижения расходов для открытия новых рынков. Как лучше всего выполнить этот поиск? Попробовав применить новые технологии ИИ к старым управленческим принципам тейлоризма (концепцию мы впервые упомянули в главе 6).
Век назад индустриальное общество было захвачено идеей измерений, что должно было подтолкнуть эффективность и повысить качество производственных процессов. Отец управленческого консалтинга Фредерик Уинслоу Тейлор (Frederick Winslow Taylor) представил идею научного управления промышленной производственной линией в начале ХХ века в своей книге «Принципы научного управления»15. Тейлор продвигал идею того, что практически любая работа на заводе может и должна быть разбита на отдельные задачи с обозначенными временем, ходом работы и результатом. Что более важно, уровни производительности и лучшие практики должны кодифицироваться и воспроизводиться. Подобное мышление стало основой индустриальной модели, находящей новые уровни координации, результативности и качества.
В те времена некоторые осуждали тейлоризм, указывая на то, что считали дегуманизацией и отменой индивидуального принятия решений, традиционно присущего мастеру. Но экономика все же победила: идеи Тейлора стали глобальным трендом, и научное разделение работы позволило лучшим промышленным практикам широко распространиться по регионам и отраслям.
Сегодня гипероснащенный измерителями и проанализированный мир воспринимает тейлоризм на новых уровнях. Умственный труд может быть изучен и оптимизирован так, как век назад это было сделано с физическим трудом. Это будет иметь далеко идущие последствия для будущего вашей работы и конкурентоспособности компании.
Идеи цифрового тейлоризма особенно важны для цифровых инноваций внутри крупных организаций. Инновации по сути своей беспорядочны, но им не нужен этот хаос. Многие компании стремятся снизить расходы, чтобы расширить рынки, но многие инициативы проваливаются из-за чувства «собственничества». Мандат на право «мыслить по-другому» – это то, что мы часто видим и что на практике должно исчезнуть. Строгость и контрольные показатели, ассоциируемые с цифровым тейлоризмом, кажется, скоро принесут в жертву ослаблению привычной бизнес-дисциплины, преобладающей в устоявшихся отраслях бизнеса. При этом, настаивая на применении высочайших организационных стандартов и переноса лучших практик из эры Тейлора в нашу цифровую экономику, организация может принести философию стандартизации и постоянного улучшения в свою цифровую деятельность.
Повысить благосостояние, снижая цены
Рынки изобилия здесь, они реальны, и бизнес-лидеры начинают менять ландшафт конкуренции, снижая цены, повышая персонализацию и раскрывая новые крупномасштабные возможности. Как мы уже показывали, ключ к серьезному снижению расходов – использование новой машины, которая питается данными и обернута новой коммерческой моделью. Она открывает шлюзы массового роста.
Многие цифровые скептики упускают из виду общий потенциал роста, исходящий из рынков изобилия. Чем больше мы работаем с покупателями и наблюдаем за рынком, тем больше можем быть уверены, что предсказатели конца света сегодня ошибаются, как никогда прежде.
Автоматизация, Ореолы кодов, расширение и изобилие – все это рычаги ценности работы, которую уже ведут многие компании. Но как насчет по-настоящему свежих идей? Как нужно компаниям преобразовать самих себя, чтобы стать способными создать следующий Uber, Predix, Palantir или Х.ai? Сбалансированные инвестиции и подпитка новых идей о будущем одновременно с ведением бизнеса – всегда нелегкая задача. Многие из нас выросли с мифом о вкалывающем до потери пульса одиноком изобретателе, мастерящем Следующую Большую вещь. Оказывается, однако, что в инновациях есть и искусство, и наука. В цифровой экономике мы зовем это «открытием».
Глава 11
Открытие: управлять инновациями в цифровой экономике
Как мы уже поняли из этой книги, будущее работы будет фундаментально иным, если машины делают все. Открывать будущее – через формальные процессы исследований и разработок и неформальные постоянные в духе «с ног на голову» – предмет этой последней главы, посвященной описанию нашей модели AHEAD, или ВПЕРЕД.
Открытия, они же прорывные инновации, связанные с интеллектуальными системами и цифровой экономикой, – это одновременно и катализатор, и результат предпринятых ранее шагов AHEAD. Автоматизация, инструментирование, расширение и предоставление товаров и услуг в изобилии позволят вашей организации открыть возможности, которые раньше были не видны и недоступны.
При этом открытие само по себе – это философия, строгая практика, открытость будущему, понимание того, что инновации не могут быть побочным проектом, чем-то таким, что «неплохо бы иметь», или погрешностью округления расходов, зарытую где-то в глубине отчетов. Открытие – центральный фактор для того, чтобы оставаться уместными в большом цифровом подъеме, к которому мы подошли. По мере того как машины будут делать все больше и больше нашей текущей работы, инновационный процесс позволит открыть абсолютно новые вещи, которые можем делать мы (без машин), которые невозможно вообразить и трудно предсказать, но они станут центром того, чем мы займемся в будущем.
На страницах книги мы затронули многие исторические фигуры: Генри Форда, Томаса Эдисона, Неда Лудда и других. Мы начнем эту главу с одной гораздо менее известной личности: изобретателя, чей скромный технологический прорыв сто восемьдесят шесть лет назад оказал несоизмеримое воздействие на весь мир (что особенно заметно по воскресеньям после четырех часов дня). Его эволюция может научить нас кое-чему не только о том, как работает инновация, но и о том, как можем и должны верить в то, что неизвестное будущее даст нам удивительные возможности.
Задумайтесь на минутку о сегодняшней глобальной спортивной индустрии, приносящей более шестисот двадцати миллионов долларов в год1. Дополнительные доходы (проданные за игру хот-доги, поездки на такси и метро до спортивной арены, принятый после того, как ваша команда проиграла и вылетела в первом туре, ибупрофен) и общее количество денег, которые генерирует спорт, вероятно, еще намного выше этой цифры.