Автор изучает пропорциональный рост. Он беседует с ученым из Колорадо, ставшим звездой YouTube, и рассказывает биографию числа, лежащего в основе капитализма, каталонской архитектуры и поисков спутника жизни
В Боулдере я навестил автора лекции, с которой он выступил, пожалуй, наибольшее количество раз за всю историю науки[106]. Альберт Бартлетт, почетный профессор физики Колорадского университета, впервые прочел лекцию Arithmetic, Population and Energy («Арифметика, население и энергия») в 1969 году[107]. К тому времени, когда я с ним встретился, он выступил с ней уже 1712 раз и, несмотря на то что ему почти 90 лет, продолжал читать ее примерно по 20 раз в год. Бартлетт был высоким мужчиной крепкого телосложения с величественной осанкой, носившим галстук «боло» в стиле Дикого Запада с пряжкой, украшенной звездами и планетами. В своей знаменитой лекции Бартлетт не предвещающим ничего хорошего тоном заявляет о том, что величайший недостаток рода человеческого состоит в его неспособности понять суть экспоненциального роста. За последние годы это простое, но мощное послание сделало Бартлетта звездой интернета: видео его лекции под названием The Most IMPORTANT Video You’ll Ever See («Самое важное видео, которое вы когда-либо увидите»), выложенное на YouTube, получило более 5 миллионов просмотров.
Экспоненциальный (или пропорциональный) рост имеет место в случае, если какая-то величина постоянно увеличивается пропорционально ее значению, например путем удвоения:
1, 2, 4, 8, 16, 32, 64…
Или посредством умножения на три:
1, 3, 9, 27, 81, 243, 729…
Или даже посредством увеличения всего лишь на один процент:
1; 1,01; 1,0201; 1,0303; 1,0406; 1,05101; 1,06152…
Все эти числа можно представить и в таком виде:
20, 21, 22, 23, 24, 25, 26…
30, 31, 32, 33, 34, 35, 36…
1,010; 1,011; 1,012; 1,013; 1,014; 1,015; 1,016…
Маленькое число, расположенное вверху справа от числа нормального размера, называется показателем степени (экспонентой) и указывает, сколько раз необходимо умножить нормальное число на себя. Последовательности, в которых величина растет со скоростью, пропорциональной ее значению, демонстрируют экспоненциальный рост, так как у каждого очередного члена ряда показатель степени увеличивается на единицу.
Когда величина растет по экспоненциальному закону, то чем больше она становится, тем быстрее увеличивается, поэтому всего после нескольких шагов она может достичь ошеломляющего значения. Давайте посмотрим, что произойдет с листом бумаги, если складывать его вдвое. В результате каждого очередного сгибания лист становится толще в два раза. Поскольку толщина листа бумаги составляет примерно 0,1 миллиметра, вследствие каждого сгибания она будет увеличиваться так: