в разъярившихся тучах;
Землю трясет отчего, что движет созвездия ночи;
Все, чем таинственен мир.
Из этих строк явствует, что концепция Пифагора была натурфилософской. Он искал божественное начало в природе, не отделяя религиозного познания от естественнонаучного. Овидий излагает и сущность воззрений Пифагора:
Не сохраняет ничто неизменным свой вид; обновляя
Вещи, одни из других возрождает обличья природа,
Не погибает ничто — поверьте! — в великой вселенной.
Разнообразится все, обновляет свой вид; народиться —
Значит начать иным быть, чем в жизни былой; умереть же —
Быть, чем был, перестать; ибо все переносится в мире
Вечно туда и сюда: но сумма всего — постоянна.
Порфирий, ссылаясь на философа Дикеарха, писал, что, согласно Пифагору, "душа бессмертна, но переходит из тела в тело живых существ; далее все происходящее в мире повторяется через определенные промежутки времени, но что ничего нового вообще не происходит".
Это — взгляды, характерные для орфической теософии и восточных религий. Для грека, искавшего цельное мировоззрение и соприкоснувшегося с Востоком, самым естественным было обратиться к учению орфиков, которое сочетало в себе эллинский и восточные элементы.
Приведенные свидетельства показывают, что Пифагор усвоил идею циклизма, столь свойственную всем древним миросозерцаниям.
Центром его учения было понятие гармонии.
Именно Пифагор впервые назвал Вселенную космосом (от глагола "космео" — устраивать, украшать).
Следовательно, Пифагор был первым, кто, по крайней мере на европейском континенте, осознал величие мироздания.
Пифагор требовал уважения к богам, но, как и для Будды, они не были для него высшими существами: они лишь олицетворяли ту или иную сторону мироздания. Он утверждал, что видел в потустороннем мире Гомера и Гесиода, которые терпели муки за то, что повторяли нелепые басни о богах.
Интересно, что Данте в "Божественной Комедии" поместил дохристианских поэтов и мыслителей в ад и тем самым как бы повторил сюжет Пифагора.
Верховным Божеством философ почитал некое огненное Единство, пребывающее в самом средоточии космоса.
Впивая потоки пустоты, окружающей Центр, это пламенное Целое образует множественность миров, состояний и качеств.
Стройная красота Вселенной осуществляется через согласование двадцати противоположных ее частей, или начал: предел и беспредельное, покой и движение, прямое и кривое, мужское и женское, хорошее и дурное, чет и нечет, правое и левое, единое и множественное, квадратное и разностороннее, свет и тьма.
Пифагор на место каприза, произвола и неустойчивости, которые усматривала в мире Олимпийская религия, поставил идею закономерности, признавая причастность человеческого духа, рожденного, чтобы переживать красоту и гармонию, к космосу.
Поэтому музыка была в глазах Пифагора лучшей бессловесной проповедью. Он утверждал, что она обладает способностью поднимать душу по ступеням восхождения и открывать высший порядок, скрытый от взоров невежд. Пифагор учил своих последователей слушать "гармонию сфер", вселенское звучание космического строя.
Музыка и математика вели пифагорейцев к мировой гармонии. Математика, по Пифагору, нечто неизмеримо большее, чем подспорье для архитекторов и мореходов.
Погружение ума в чистый мир чисел открывает ему то измерение бытия, которое доступно не чувствам, а только интеллекту. Геометрические формы и числа как таковые принадлежат умопостигаемой сущности природы, они больше всех человеческих иероглифов отрешены от чувственных образов.
Общественным идеалом мудреца была аристократическая форма правления, понимаемая как господство "аристократов духа", посвященных в высшее знание.
Союз настолько завоевал политическую популярность, что пифагорейцам удалось взять в руки бразды правления и распространить власть на соседние города Италии.
В 510 году вспыхнуло восстание демоса, произошли столкновения, погибли сторонники организации и пифагорейцы окончательно ушли в подполье.
Пифагорейство передало эстафету будущим поколениям через Эсхила, Платона, Евклида.
Когда Коперник отверг геоцентризм, он ссылался на труды пифагорейцев.
VII. Леонардо Пизанский Фибоначчи
За столетие до Данте математик из города Пиза, расположенного всего в 80 километрах к западу от Флоренции, Леонардо Пизанский Фибоначчи (1170–1228 гг.) опубликовал знаменитые работы "Liber Abaci" (1202 год) и "Practica Geometriae" (1220 год), в которых, опередив достижения современной ему европейской науки на несколько веков, получил серьезные результаты в теории чисел и алгебре, впервые применил алгебру в исследовании геометрии и описал математический ряд, названный числами Фибоначчи.
Через полтора столетия после Данте тоже флорентиец Леонардо да Винчи (1452–1519 гг.) в своем творчестве применил и описал принцип "золотого сечения", который лег в основу композиционного построения произведений искусства эпохи Ренессанса.
Принцип "золотого сечения" формулируется следующим требованием: при делении целого на две части гармония достигается в том случае, если целое делится не на равные части и размер меньшей части соотносится с размером большей части так же, как размер большей части соотнесется с размером целого.
Все прекрасное в природе — от микромира до мира метагалактик — подчиняется соотношению "золотого сечения".
Математикой принципа "золотого сечения" являются числа Фибоначчи, объединенные в следующий ряд: 1, 1, 2, 3, 5, 8, 13, 21, 34…., каждый член которого равен сумме двух предыдущих.
Отношения соседних чисел ряда [2/3, 3/5, 5/8, 8/13, 13/21, 21/34…., приближающиеся к значению
] дают пропорции, использование которых скульпторами, живописцами, архитекторами, композиторами, балетмейстерами делает произведения искусства прекрасными.
При этом, если обозначить буквой "А" результат деления соседних чисел Фибоначчи, то есть исходить из того, что А =
, то получаются математические соотношения, красота которых восхищает сама по себе, даже если забыть, что за ними стоит Божественная Гармония:
А х А = 1 — А х 1
А х А х А = -1 +А х 2
А х А х А х А = 2 — А х З
А х А х А х А х А = -3 +А х 5
А х А х А х А А х А = 5 — А х 8
и так далее (в соответствии с рядом Фибоначчи);
1 /А = 1 + А х 1
1 /(А х А) = 2 + А х 1
1/(А х А х А) = 3 + А х 2
1/(А х А х А х А) = 5 + А х З
1/(А х А х А х А х А) = 8 + А х 5
и так далее (в соответствии с рядом Фибоначчи).
В эпоху Возрождения с увлечением занимались вопросами пропорций ("божественные пропорции"). Тогда упивались математическими выкладками, использованием чисел во всяких алгебраических и геометрических построениях. Строились великолепные многогранники с вписанными в них осевыми линиями и окружностями, в которые