По Аристотелю, Вселенная состоит из ряда концентрических хрустальных сфер, движущихся с разными скоростями. Они приводятся в движение крайней сферой неподвижных звезд; в центре Вселенной расположена шарообразная, также неподвижная Земля, вокруг которой по концентрическим окружностям вращаются планеты. Между орбитой Луны и центром Земли (так называемый подлунный мир) находится область беспорядочных неравномерных движений, а все тела в ней состоят из четырех низших элементов: земли, воды, воздуха и огня. Земля, как самый тяжелый элемент, занимает центральное место, над ней последовательно размещаются оболочки – вода, воздух, огонь. Между орбитой Луны и крайней сферой неподвижных звезд (так называемый надлунный мир) расположена область вечных равномерных движений, а сами звезды состоят из пятого элемента – эфира.
Физика и космология Аристотеля вплоть до XVII столетия были официально признаны католической церковью, и любое посягательство на эту теорию считалось подрывом устоев религии. На теории Аристотеля построил свою геоцентрическую гипотезу Птолемей. Согласно теории Птолемея, Вселенная состоит из восьми сфер, по структуре похожих на луковицу: в центре Земля, затем Луна, Меркурий, Венера, Солнце, Марс, Юпитер и, наконец, последняя сфера – небесный свод, где находятся звезды.
От Коперника до Галилея и Ньютона
В середине XVI в. Николай Коперник, польский астроном и одновременно, каноник собора во Фромборке (рыбачьем городке в устье Вислы), предложил отказаться от геоцентрической системы мира Птолемея в пользу гелиоцентрической системы, согласно которой в центре всего находится Солнце. Вслед за ним Галилей, продолживший борьбу за гелиоцентрическую систему мира, заложил основы экспериментальной физики и вывел принцип относительности, состоящий в том, что все механические процессы и явления протекают одинаково в инерциальных системах отчета.
В XVII в. английский физик и математик Исаак Ньютон вывел три закона, которые легли в основу классической механики. Первый закон Ньютона постулирует существование инерциальных систем отсчета. Второй закон Ньютона – дифференциальный закон движения, описывающий взаимосвязь между силой, приложенной к материальной точке, и получающимся в результате ускорением точки. Третий закон Ньютона описывает, как взаимодействуют две материальные точки. Ньютон говорил о едином потоке времени, охватывающем все мироздание. Мы можем повествовать о событиях, происходящих одновременно в одно и то же мгновение во всем бесконечном пространстве.
Представление об одном и том же мгновении во всем мире, о последовательности таких общих для всего мира мгновений, т. е. об абсолютном времени, протекающем везде, и об одновременности отдаленных событий – одно из самых фундаментальных представлений классической физики.
Старое и новое
Классическая механика Ньютона оказалась верна лишь в земных и близких к ним условиях: при скоростях много меньше скорости света, а также размерах, значительно превышающих размеры атомов и молекул, и при расстояниях или условиях, когда скорость распространения гравитации можно считать бесконечной. Но ньютоновские понятия о движении оказались кардинально скорректированы новым, достаточно глубоким применением принципа относительности движения. Время уже не считалось абсолютным и равномерным. Более того, Эйнштейн изменил фундаментальные взгляды на время и пространство. Согласно теории относительности, время необходимо воспринимать как почти равноправную составляющую (координату) пространства-времени, участвующую в преобразованиях координат при изменении системы отсчета вместе с обычными пространственными координатами, подобно тому, как преобразуются все три пространственные координаты при повороте осей обычной трехмерной системы координат.
Основная деятельность Эйнштейна и главное содержание его жизни после появления специальной теории относительности заключались в поисках более общей теории. Эйнштейн считал искусственным выделение равномерно и прямолинейно движущихся систем из числа других. В равномерно и прямолинейно движущихся системах механические процессы происходят единообразно и не зависят от движения системы. В системах, движущихся с ускорением, механические процессы происходят не единообразно, они зависят от ускорения, ускорение вызывает в этих системах силы инерции, которые нельзя объяснить взаимодействием сил и которые свидетельствуют о движении системы, придавая этому движению абсолютный характер. Поэтому принцип относительности Галилея – Ньютона применим только к системам, движущимся прямолинейно и равномерно.
Специальная теория относительности утверждает: в инерциальных системах не только механические, но и все физические процессы происходят единообразно. Но дело по-прежнему ограничивается только инерциальными системами. Ускорение вызывает нарушение единообразного хода процессов в системе. Так демонстрируется абсолютный смысл: можно ли представить события в ускоренных системах не нарушающими принципа относительности, т. е. не дающими абсолютных критериев движения? Можно ли обобщить принцип относительности, полностью доказанный для инерциальных систем, на ускоренные системы?