Топ за месяц!🔥
Книжки » Книги » Разная литература » Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов 📕 - Книга онлайн бесплатно

Книга Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов

10
0
На нашем литературном портале можно бесплатно читать книгу Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов полная версия. Жанр: Книги / Разная литература. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 ... 64
Перейти на страницу:
углубиться в структуру вещей. Одно из моих детских воспоминаний – микроскоп у нас дома и загадочные разноцветные картинки каменных срезов – шлифов, которые изучала моя мама и на которые время от времени мне удавалось взглянуть. Каждая такая картинка сама по себе ничем не напоминала камень, но несла в себе информацию о его структуре и даже происхождении. Погружение в глубину вещей «объясняло» эти вещи – в данном случае горные породы – как определенную комбинацию нескольких более примитивных блоков, а именно минералов. Вопрос следующего уровня – из чего состоят сами минералы – был уже предметом не петрографии («науки о камнях»), а химии («науки о составе всего»). Путешествие еще на несколько уровней «вниз» и является предметом этой книги – в первую очередь в отношении того, какие правила там действуют и как эти правила определяют условия сборки элементов, которые в конце концов складываются во все, что нас окружает.

Еще в первой половине XIX в. о структуре материи стало постепенно известно примерно следующее. У каждого вещества (чистого, т. е. не являющегося смесью) имеется наименьшая часть – атом или молекула. Молекулы же построены как комбинации нескольких атомов – элементов, меньше которых уже ничего нет. В химических реакциях одни молекулы разрушаются, а другие образуются, и происходит это именно за счет перераспределения атомов между ними.

Сейчас мы узнаём это в школе, часто не вполне осознавая, что уже здесь намечается разрыв с привычной реальностью. Дело в том, что этих атомов и молекул не видно ни в один микроскоп в обычном понимании этого слова. И возникли они в науке XIX в. не как элементы физической реальности, а как «средство бухгалтерского учета» в химических реакциях – как вычислительный прием, позволяющий определить, какое количество одного вещества полностью прореагирует с заданным количеством другого вещества. В этом самом месте мы впервые встречаемся с мотивом, который, с некоторыми вариациями, прозвучит для нас еще не раз. Этим атомам, которые использовались для подсчета баланса в химических реакциях, не назначалось никаких других свойств, кроме способности вступать в комбинации друг с другом, составляя тем самым различные молекулы. Это и правда было средством учета, почти как разбиение доходов и расходов по статьям. В таком теоретическом качестве идея атомов отлично работала, но совершенно правомочно звучал вопрос: а существуют ли они? Не слишком ли самоуверенно думать, что раз мы нашли удобную вычислительную схему для определения правильных количеств веществ в химических реакциях и успешно оперируем ею на бумаге, то в природе, видите ли, на полном серьезе обнаружатся элементы этой схемы?

Скепсис (который, надо сказать, является одним из составляющих науки) набрал немалую силу в отношении атомов на рубеже XIX и XX вв., и реальность этих конструктов многим (включая и Менделеева – первооткрывателя Периодического закона) представлялась тогда далеко не очевидной. Дополнительный аргумент скептиков состоял в том, что атомы, как считалось, принципиально ненаблюдаемы. Спрашивается, следует ли полагаться на «реальное» существование объектов, реальность которых едва ли можно проверить?

Увидеть атом и правда нельзя, причем не из-за свойств нашего зрения, а в силу определения того, что значит «увидеть». Дело в том, что различить с помощью света можно только те подробности, которые по размеру больше (а лучше – заметно больше), чем длина световой волны. А у видимого света, даже если он фиолетовый, т. е. наиболее коротковолновый, длина волны такая, что на ней укладывается пара тысяч атомов. Попробуйте-ка разглядеть одну букву в слове, если самое мелкое, что можно увидеть, – слово из тысячи букв! (Красивые изображения атомов, которыми нередко иллюстрируются научные достижения, – например, атомы, уложенные регулярными рядами, – это результаты компьютерной обработки данных, которые получены довольно хитрыми, непрямыми способами и сами по себе фотографиями не являются; обычно это восстановленная по некоторым косвенным измерениям усредненная электронная плотность.) В общем, я предлагаю начинать привыкать к тому, что атом никак не выглядит.

Принято воздавать должное атомистической концепции, уходящей корнями в Античность. Да, порой интересно искать в прошлом предшественников дорогих нам существенно более поздних идей, но, действуя так, мы часто переносим на те ранние догадки и предположения хотя бы часть того, что нам сейчас известно про обсуждаемую концепцию. И заодно мы склонны забывать, что эти первоначальные идеи конкурировали тогда с другими, часто противоположными воззрениями, а сигналов из будущего насчет предпочтения одних перед другими не поступало. Предсказал ли атомы в V в. до н. э. Демокрит, высказавший идею о существовании пустоты и неделимых атомов, исходя при этом из вполне философского беспокойства по поводу бесконечной делимости материи? Произвольно сделанное предположение, пусть даже ставшее фундаментом философской системы, можно с легкостью «опровергнуть», высказав другое равно произвольное предположение и выстроив на его основе другую философскую систему. В точности так и поступил с атомами Аристотель (ок. 330 г. до н. э.), высказав противоположную идею непрерывности и заодно разделавшись с пустотой (которой, по его известному мнению, природа не терпит).

Серьезная же дискуссия о реальности атомов, с опорой на опыт в комбинации с существенно более развитыми теоретическими методами, пришла к своему завершению после 1908 г. Скепсис начала 20-го века оказался преодолен благодаря экспериментам, в которых был остроумно задействован «посредник» – мелкая частичка, брошенная в жидкость. От нее требовалось быть настолько мелкой, чтобы случайным образом дергаться в жидкости под действием «пинков», которые сообщают ей непрестанно движущиеся молекулы, но при этом достаточно крупной, чтобы (в отличие от самих молекул и атомов) ее можно было разглядеть в микроскоп. Оказалось, что характер видимого движения такой частички действительно определяется «пинками» со стороны предполагаемых невидимых агентов и, более того, отражает некоторые свойства этих агентов, например их массу и характерный размер, – в полном согласии с тем, что получалось, если считать эти агенты молекулами. Что же более основательно доказывает физическое, а не номенклатурное существование каких-либо объектов, как не удары, получаемые с их стороны? Атомы прочно и уже безвозвратно прописались в наших взглядах на мир.

Но победа передового атомизма во всемирном масштабе не обошлась, как это случается в подобных ситуациях, без перегибов. Вольно или невольно мысль склонялась к тому, что раз атомы пихаются как маленькие мячики, то, наверное, они и представляют собой что-то похожее на мячики, только очень маленькие. Но «мячики, только очень маленькие» оставляют больше вопросов, чем дают ответов. Например, как представлять себе их поверхность: из чего она сделана? Если снова затянуть ту же песню – сделана, мол, из еще более мелких штучек, – то и правда пора обращаться к Демокриту за моральной поддержкой против дурного деления материи на всё более мелкие части. Однако инерция мышления сильна и в несчетном числе рассказов об устройстве атомного мира продолжали существовать маленькие шарики.

Желание видеть внутреннее устройство вещей как миниатюризацию чего-то привычного было все еще заметно в модели атома, которая появилась в 1913 г. В ней атом уподоблялся планетной системе с электронами вместо планет и ядром вместо звезды, но на орбиты накладывались жесткие условия, из-за которых оказывались возможными лишь отдельные, «избранные» орбиты. Эта модель была прогрессивной для того момента, она принесла Нобелевскую премию ее автору, Бору, но и пользу в качестве важного шага к разрыву с классической картиной мира, но это неправильная модель. Тем не менее аналогия с «понятным» устройством вещей сделала ее, по существу, мемом, хотя после появления настоящей квантовой механики сам автор модели, Бор, сталкиваясь с апелляциями к ней, вопрошал: «Они что, никогда не слышали про квантовую механику?» При случае стоит спросить себя, каким же образом несколько орбит превращают крохотный объем пространства во что-то, похожее не на диск, а на шар? И как, собственно, организовать атом, одинаковый по всем направлениям, исходящим из его центра, в простейшем случае, когда там имеется всего один электрон? (Солнечную систему с одним только Меркурием сложно назвать шарообразной.)

С электронами мы слегка забежали вперед, и сейчас это исправим. К моменту победы атомизма действительно никто уже не воспринимал атомы как нечто неделимое: стало понятно, что в них содержатся носители отрицательного электрического заряда, которые при определенных условиях могут оттуда уходить. Это электроны, намеки на существование которых появлялись уже с середины XIX в., но которые были «официально» открыты в 1897 г. именно как агенты, проявляющие себя

1 ... 3 4 5 ... 64
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов», после закрытия браузера.

Комментарии и отзывы (0) к книге "Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов"