нечто одно было таково, каково оно есть, ибо совершенно отличное от него другое таково, каково оно есть; вместо того, чтобы этим путем дать глубокое проникновение в существо треугольника, он выдвигает несколько отрывочных, произвольно выбранных теорем о треугольнике и выясняет их логическую основу познания посредством многотрудной, логически построенной аргументации по закону противоречия. Вместо исчерпывающего познания этих пространственных отношений мы получаем, таким образом, лишь немногие, произвольно сообщенные выводы из них, и мы находимся в таком же положении, как человек, которому показали различные действия хитро налаженной машины, но не объяснили ее внутренней связи и устройства. То, что все, доказываемое Евклидом, обстоит именно так, с этим мы, побуждаемые законом противоречия, должны согласиться; но почему это так, мы не узнаем. Поэтому испытываешь почти неприятное чувство, как после проделок фокусника, и на них в самом деле поразительно похоже большинство евклидовых доказательств. Истина почти всегда приходит с заднего крыльца, обнаруживаясь per accidens из какого-нибудь побочного обстоятельства. Часто апагогическое доказательство закрывает все двери, одну за другой, и оставляет открытой лишь одну, в которую потому поневоле и входишь. Часто, как в пифагоровой теореме, проводятся линии, неизвестно почему; потом оказывается, что это были сети, которые неожиданно затягиваются и ловят согласие учащегося, и он, к своему изумлению, должен признать то, что по своей внутренней связи остается для него совершенно непонятным, – до такой степени, что он может проштудировать всего Евклида, не достигнув истинного понимания законов пространственных отношений, а вместо этого заучив лишь некоторые выводы из них. Это собственно эмпирическое и ненаучное знание похоже на сведения врача, который знает болезнь и средство против нее, но не знает их взаимной связи. И все это является результатом того, что свойственный известному виду познания характер доказательства и очевидности своевольно отвергают и насильственно заменяют его другим, чуждым существу данного знания. Впрочем, метод, каким пользовался Евклид, заслуживает всяческого восхищения, и оно сопровождало его творца в течение многих веков и зашло так далеко, что его математические приемы были сочтены образцом научного изложения, которому старались подражать во всех других науках и от которого впоследствии все-таки отвернулись, не зная, однако, почему. В наших же глазах метод Евклида в математике предстает лишь блестящим извращением. Но для каждого великого заблуждения, будь то в жизни или в науке, имевшего преднамеренный и методический характер и сопровождавшегося всеобщим одобрением, всегда можно найти причину в философии, какая господствовала в то время.
Элеаты впервые открыли различие, а иногда и противоречие между являющимся, φαινομενον[36], и мыслимым, νοουμενον[37] [здесь не может быть и речи о кантовском злоупотреблении этими греческими терминами, которое я критикую в приложении], и многообразно воспользовались этим для своих философем и для своих софизмов. По их стопам впоследствии пошли мегарцы, диалектики, софисты, новые академики и скептики. Они обратили внимание на призрачность, т. е. обман чувств, или, скорее, рассудка, превращающего данные чувств в созерцание; этот обман часто заставляет нас видеть такие вещи, которым разум уверенно отказывает в реальности, – например, переломленную палку в воде и т. п. Было понятно, что чувственному созерцанию нельзя доверять безусловно, и отсюда поспешно заключили, будто одно лишь разумное логическое мышление служит порукой истины, хотя Платон (в «Пармениде), мегарцы, Пиррон и новые академики показали на примерах (как позднее в том же роде Секст Эмпирик), что, с другой стороны, умозаключения и понятия тоже вводят в заблуждение и даже влекут за собой паралогизмы и софизмы, которые возникают гораздо легче и разрешаются гораздо труднее, чем призрачность в чувственном созерцании. И тем не менее, рационализм, возникший в противовес эмпиризму, одержал верх, и в соответствии с ним Евклид обработал математику, поневоле обосновывая наглядной очевидностью (φαινομενον) только одни аксиомы, а все остальное – умозаключениями (νοουμενον). Его метод господствовал в течение всех веков, и этому не было бы конца, если бы не было установлено различие между чистым созерцанием а priori и эмпирическим созерцанием. Впрочем, уже комментатор Евклида Прокл, по-видимому, вполне сознавал эту разницу, как показывает у него то место, которое Кеплер перевел на латинский язык в своей книге De harmonia mundi; но Прокл не придал этому вопросу достаточной важности, поставил его слишком изолированно, остался незамеченным и не достиг цели. Только две тысячи лет спустя учение Канта, которому суждено провести столь великие перемены во всем знании, мышлении и деятельности европейских народов, оказало такое же влияние и на математику. Ибо лишь после того, как этот великий ум научил нас, что созерцания пространства и времени совершенно отличны от эмпирических, вполне независимы от всякого воздействия на чувства и обусловливают его, а не обусловливаются им, т. е. априорны и потому совсем недоступны иллюзиям чувств, – лишь после этого мы в состоянии понять, что логические приемы Евклида в математике являются ненужной предосторожностью, костылем для здоровых ног, что они подобны путнику, который, приняв ночью ясный, твердый путь за воду, боится ступить на него и все время ходит около по ухабистой почве и рад время от времени наталкиваться на мнимую воду. Лишь теперь мы можем с уверенностью утверждать, что то необходимое, что представляется нам при созерцании какой-нибудь фигуры, вытекает не из ее чертежа на бумаге, быть может, очень дурно исполненного, и не из абстрактного понятия, мыслимого при этом, а непосредственно из а priori известной нам формы всякого познания. Эта форма везде – закон основания; здесь она как форма созерцания, т. е. пространство, является законом основания бытия; но очевидность и значение его так же велики и непосредственны, как очевидность и значение закона основы познания, т. е. логическая достоверность. Поэтому нам нет нужды и не следует доверять только последней и покидать свойственную математике сферу для того, чтобы искать ей подтверждение в совершенно чуждой для нее области понятий. Оставаясь на свойственной математике почве, мы получаем то великое преимущество, что здесь знание того, что нечто обстоит так, совпадает со знанием того, почему это так, – между тем как евклидовский метод совершенно разделяет оба эти знания и дает лишь первое, а не последнее. Аристотель прекрасно говорит в Analyt. post.I, 27: «Знание сразу и о том, что есть, и о том, почему есть, более точно и первично, чем отдельно знание о том, что есть, и о том, почему есть». Ведь в физике мы только тогда испытываем удовлетворение, когда знание, что нечто обстоит так, соединяется со знанием, почему это так; что ртуть в торричеллиевой трубке подымается на высоту 28 дюймов, – это плохое знание, если не прибавить к нему, что ртуть держится