Ознакомительная версия. Доступно 19 страниц из 94
Мы уже обсуждали, что у человека всего около 20–25 тысяч генов. Но при этом наш организм способен производить более миллиона разных антител. Антитела — это особые белки, которые узнают разные антигены — части вирусов, бактерий или других патогенов. Антитела достаточно специфичны, то есть одно антитело будет связывать конкретную часть определенной бактерии, но, скорее всего, не будет связывать ее другую часть или иную бактерию. Разнообразие антител нужно, чтобы находить и обезвреживать множество вариантов разных чужеродных агентов в нашем организме. Как, имея всего 25 тысяч генов, получить миллион разных антител? Для этого используется еще один тип рекомбинации — V(D)J-рекомбинация[115], открытая японским ученым Сусуму Тонегавой. Можно сказать, что это форма генной инженерии, которая происходит внутри предшественников наших иммунных клеток, то есть внутри нас с вами.
В нашем геноме нет готовых генов, кодирующих антитела (иммуноглобулины). Вместо этого в нашей ДНК есть множество повторяющихся участков, которые называются V, D и J-сегменты. В ходе рекомбинации (в которой центральную роль и играет белок RAG1) один из множества V-сегментов, один из множества D-сегментов и один из множества J-сегментов сшиваются вместе с еще одним сегментом — C.
Представьте, что у вас есть 65 прилагательных, 27 существительных и 6 глаголов: вы можете составить из них 10530 разных предложений вида «плохой микроб застрелился», «противная бактерия утопилась» или «злой вирус повесился». Столько V(D)J комбинаций существует для тяжелой цепи иммуноглобулина человека. Похожим образом получается несколько сотен вариантов для легкой цепи, в которой есть V и J-сегменты, но отсутствует D-сегмент. Иммуноглобулины состоят из легких и тяжелых цепей, поэтому количество возможных комбинаций этих элементов нужно перемножить. Получается, что уже на этом этапе возможны миллионы вариантов иммуноглобулинов.
Генетическое разнообразие иммунных клеток — лимфоцитов — увеличивается благодаря еще одному механизму. Если лимфоцит столкнулся с антигеном, например с молекулой на поверхности бактерии, и распознал его, он начинает активно делиться. Одновременно запускаются клеточные процессы, приводящие к появлению новых мутаций в генах иммуноглобулинов[116]. Это способствует эволюции лимфоцитов: если мутации приводят к более прочной связи с антигеном, лимфоциты делятся активнее и их становится больше, если мутация приводит к тому, что антиген связывается хуже, — темпы деления замедляются. Размножаются самые удачливые, и в итоге иммунная система обогащается лимфоцитами, хорошо связывающими антиген.
Учитывая, что процесс создания иммуноглобулинов и рецепторов, распознающих чужеродные частицы, в значительной степени зависит от случайности, почему некоторые клетки иммунной системы не восстают против собственного организма? Дело в том, что предшественники иммунных клеток проходят через «бутылочное горлышко» естественного отбора. Перед тем как иммунные клетки «созревают», происходит проверка их качества: если они распознают клетки самого человека как чужеродные, в них запускается программа самоуничтожения (апоптоз).
Кроме V(D)J-рекомбинации, есть еще один механизм естественной генной инженерии лимфоцитов. Этот механизм позволяет изменять свойства иммуноглобулина, сохраняя его специфичность. Например, на ранних этапах инфекции B-клетки человека (один из видов лимфоцитов) производят иммуноглобулины класса М. Это очень крупные антитела, состоящие из десяти одинаковых тяжелых и десяти легких цепей. На более поздних этапах инфекции такой лимфоцит может подвергнуться генетической модификации: часть гена тяжелой цепи иммуноглобулина вырезается, а полученный ген теперь кодирует другой иммуноглобулин G. Иммуноглобулин G сохраняет прежнюю комбинацию V(D)J-сегментов (и специфичность узнавания антигена), но уже состоит из двух тяжелых и двух легких цепей. Подобное переключение класса антител путем направленных изменений генов внутри лимфоцитов позволяет еще больше расширить функциональность иммунной системы.
Этим примеры природной генной инженерии не исчерпываются. Я уже упоминал опыты Гриффита, в которых было показано, что мертвые патогенные пневмококки могут передавать свою наследственную информацию живым непатогенным пневмококкам. Оказывается, что бактерии вообще охотно захватывают кусочки чужой наследственной информации. В этом смысле они подобны инопланетной расе зергов из компьютерной игры StarCraft. Эти инопланетяне уничтожали другие формы жизни, но брали у них полезные гены и встраивали в свой геном, приобретая новые свойства и способности. Бактерии обмениваются кольцевыми молекулами ДНК — плазмидами, также они обмениваются генами через бактериофаги. Кроме того, у бактерий есть секс, который называют конъюгацией. Бактерии соединяются друг с другом с помощью особых отростков, пилей, и передают по ним наследственную информацию (чаще всего упомянутые плазмиды или транспозоны).
Склонность бактерий хватать чужие гены имеет серьезные последствия. Мы уже обсуждали пример, когда произошел обмен генами между двумя штаммами кишечной палочки и получился новый и весьма опасный для человека штамм, который убил несколько десятков людей в Германии. Другая проблема связана с тем, что некоторые болезнетворные бактерии могут позаимствовать гены устойчивости к антибиотикам у своих безобидных «коллег», встречающихся повсеместно в природе.
Антибиотики, такие как классический пенициллин, выделенный из грибов, — эффективные антибактериальные средства, но чем больше мы их используем, тем хуже они работают. Используя антибиотики слишком часто, мы создаем условия, в которых бактерии начинают эволюционировать, вырабатывая устойчивость к этим препаратам. Мы убиваем бактерий антибиотиком, но бактерий очень много, а благодаря мутациям они еще и разнообразны. Некоторые бактерии с полезными мутациями, обеспечивающими устойчивость к антибиотикам, выживают. Горизонтальный перенос генов позволяет выжившим бактериям передавать устойчивость не только своим прямым потомкам, но и другим бактериям, в том числе и более опасным.
Сегодня в развитых странах пытаются снижать частоту применения антибиотиков. Становится ясно, что не стоит злоупотреблять антибиотиками в сельском хозяйстве, а новые антибиотики нужно использовать только при крайней необходимости, чтобы чрезмерно не стимулировать эволюцию бактерий. Не стоит употреблять антибиотики без назначения врача, а курс лечения следует проходить до конца, поскольку от малой дозы антибиотиков погибнут только наименее приспособленные бактерии, а потомки выживших могут стать еще лучше приспособленными и опасными. Еще один способ предотвращения такой нежелательной эволюции бактерий — использование сразу нескольких разных антибиотиков. К подобным «коктейлям» сложнее приспособиться.
Ознакомительная версия. Доступно 19 страниц из 94