неожиданными. Так, 13 января 1998 года программой развития нетрадиционных источников энергии ЕС Thermie в Нортгемптоне в Англии намечено строительство электростанции, действующей на курином помете. Предполагается, что она будет сжигать в топках 120 тысяч тонн куриного помета в год). Все они производят энергию и не имеют в качестве последствия загрязнения, и все они возобновляемы и неиссякаемы. Более того, их можно использовать более сложным образом, чем ранее.
Например, нам не нужно как сумасшедшим рубить деревья, чтобы жечь их ради тепла или, чтобы выжечь древесный уголь для сталелитейной промышленности. Мы можем выращивать специальные культуры, разводимые за их высокую скорость поглощения двуокиси углерода, и приготовить из них биомассу. Мы можем сжечь эти специально выращенные культуры прямо или все же лучше вырастить определенные разновидности, из которых можно выделить горючее масло или из которых мы сможем получить спирт. Такие естественно произведенные виды топлива могут помочь нашим будущим автомобилям и фабрикам.
Большим преимуществом топлива, произведенного из растений, является то, что оно не добавляет двуокиси углерода в воздух. Топливо это включает в себя двуокись углерода, которая поглощалась месяцами или годами до этого и которая возвращается в атмосферу, откуда недавно поступила.
Опять же ветряные мельницы или их эквивалент могли бы быть построены гораздо более эффективно, чем их средневековые предшественники, и могли бы извлекать гораздо больше энергии, используя силу ветра.
В прежние времена приливы и отливы использовали для того, чтобы просто выводить корабли из гаваней. Теперь они могут быть использованы для того, чтобы при высоком приливе наполнять резервуары и при низком отливе за счет падения воды вращать турбины и производить электричество. Были предложения и о том, чтобы для получения электричества использовать разницу температур в глубине и на поверхности океана в тропиках, использовать непрекращающееся движение океанских волн.
Все эти виды энергии, вообще говоря, безопасны и вечны. Они не дают опасного загрязнения и всегда будут возобновляться, пока существуют Земля и Солнце.
Однако все эти источники энергии маломощны. Вот в том-то и дело, что они ни по отдельности, ни даже все вместе не могут обеспечить потребности человечества в энергии, как последние два столетия делают уголь и нефть. Это не означает, что они не важны. С одной стороны, каждый из этих видов энергии в каком-то одном определенном месте и по какой-то определенной причине может быть наиболее удобным видом энергии. А все они вместе могут служить для продления времени использования ископаемых видов топлива. При всех этих других видах доступной энергии сжигание ископаемых видов топлива может продолжаться в темпе, достаточно невысоком, чтобы не подвергать опасности климат, и поддерживать этот темп надо в течение длительного времени. В течение этого времени, возможно, найдется какой-нибудь источник энергии — безопасный, вечный и обильный.
И первый вопрос тут: существует ли вид энергии с подобными характеристиками.
Ответ: да, существует.
ЭНЕРГИЯ ОБИЛЬНАЯ
Прошло лишь пять лет после открытия в 1896 году французским физиком Антуаном Анри Беккерелем (1852–1908) радиоактивного излучения, как Пьер Кюри измерил тепло, испущенное радием при расщеплении. Это было первым свидетельством того, что где-то внутри атома есть огромная энергия, о которой до тех пор никто не подозревал.
Почти сразу же люди стали размышлять о возможности освоить эту энергию. Почти сразу после открытия Кюри английский писатель-фантаст Г. Д. Уэллс даже писал о возможности существования, как он назвал, «атомной бомбы».
Однако стало очевидно, что для того, чтобы высвободить эту атомную энергию (или, говоря точнее, «ядерную энергию», потому что это энергия, которая удерживает атом как целое и не включает внешние электроны, являющиеся базой химических реакций), сначала нужно было внести энергию в атом. Атом нужно было бомбардировать энергетичными субатомными частицами, которые были бы положительно заряженными. Не многие из них ударили бы в ядро, и из тех, которые ударили, не многие смогли бы преодолеть отталкивание положительно заряженного ядра и достаточно зарядили бы его, достаточно потревожили его содержание, чтобы вызвать высвобождение энергии. В результате оказалось, что нужно затратить гораздо больше энергии, чем удается извлечь. Казалось, овладеть ядерной энергией — несбыточная мечта.
Однако в 1932 году Джеймс Чедвик (1891–1974) открыл новую субатомную частицу. Из-за того, что она не имеет электрического заряда, он назвал ее «нейтроном». А из-за того, что у нее нет электрического заряда, она может подойти к несущему электрический заряд ядру, не претерпевая отталкивания. Поэтому здесь уже не понадобилось много энергии для того, чтобы нейтрон вошел в атомное ядро.
Нейтрон быстро стал излюбленной субатомной «пулей», и в 1934 году итальянский физик Энрико Ферми (1901–1954) бомбардировал атомы нейтронами таким образом, чтобы превратить эти атомы в атомы элемента, следующего за ним по порядку. Уран был элементом с порядковым номером 92, он был самым последним в таблице. Никакого элемента под номером 93 еще не было, и Ферми бомбардировал уран также и в надежде получить новый неизвестный элемент.
Результат привел в замешательство. Другие физики стали повторять эксперимент, пытаясь сделать из него какие-то выводы, особенно много уделили этому внимания немецкий физик Отто Хан (1879–1968) и его австрийская коллега Лиз Майтнер (1878–1968). Именно Майтнер в конце 1938 года поняла, что атом урана, будучи ударен нейтроном, расщепляется на два («распад урана»).
В то время она была в изгнании в Швеции, потому что как еврейке ей пришлось оставить нацистскую Германию. Она изложила свои идеи датскому физику Нильсу Бору (1885–1962), и тот в начале 1939 года привез их в Соединенные Штаты.
Американский физик венгерского происхождения Лео Сциллард (1898–1964) понял значение этого факта. Атом урана, подвергаясь расщеплению, выделяет большое количество энергии, один-единственный атом — гораздо большее, чем то малое количество энергии медленно двигающегося нейтрона, который его ударил. Более того, атом урана, когда он расщепляется, выделяет два или три нейтрона, каждый из которых мог бы ударить другой атом урана, и так далее.
Получающаяся в результате «цепная реакция» в считанные доли секунды могла бы произвести огромный взрыв, и все за счет одного первоначального нейтрона, который блуждал бы сам по себе, если бы никто не направил его сюда.
Сциллард убедил американских ученых сохранить исследование в тайне (потому что Германия готова была начать войну против цивилизованного мира), он также, поручив Альберту Эйнштейну подготовить записку по этому предмету, убедил президента Рузвельта поддержать эту работу. До окончания Второй мировой войны были созданы три бомбы на основе расщепления урана. Одна была испытана в Аламогордо, штат Нью-Мексико, 16 июля 1945 года. Две другие были сброшены на Японию.
Между тем ученые разработали и способ управлять