Топ за месяц!🔥
Книжки » Книги » Разная литература » Мифы и легенды Средневековья - Сэбайн Бэринг-Гулд 📕 - Книга онлайн бесплатно

Книга Мифы и легенды Средневековья - Сэбайн Бэринг-Гулд

15
0
На нашем литературном портале можно бесплатно читать книгу Мифы и легенды Средневековья - Сэбайн Бэринг-Гулд полная версия. Жанр: Книги / Разная литература. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 101 102 103 ... 106
Перейти на страницу:
указать на его божественную сущность. Так он появляется не только рядом с Астартой, но и Баалом.

Если крест и изображался возле нее чаще, чем возле других божеств, то это потому, что он символизировал власть богини над водой, поскольку она — Луна. Крест принадлежал ей не как богине чувственной любви, а как богине, имеющей власть над месяцем и его дождями. Баалу же он принадлежал как богу, управляющему временами года.

В той же самой статье говорится, что индийский крест тоже означал фаллос, в то время как символ этот является совершенно однозначным и ясным, если обратиться к иллюстрациям Мюллера в «Верованиях, знаниях и культуре древних индийцев».

Приложение С

Рок чисел

Законы, правящие числами, озадачивают неподготовленный ум, а результаты, которые получаются при подсчетах, бывают поразительными. Поэтому нет нужды удивляться тому факту, что числа сопровождают всякие предрассудки.

Но даже для тех, кто знаком с исчислениями, существует множество загадочных и необъяснимых вещей, которые убедительно может объяснить только хороший математик. Простой человек видит, что числа подчиняются определенным законам, но не понимает, почему так происходит, и сам факт этой невозможности объяснить способствует тому, что вокруг чисел возникает атмосфера загадочности, внушающая благоговение.

Например, особенности числа 9, открытые, как я полагаю, В. Грином, который умер в 1794 году, являются необъяснимыми для всех, кроме математиков. Свойство, о котором я говорю, состоит в том, что когда 9 умножается на 2, 3, 4, 5, 6 и так далее, то простые числа, составляющие произведение, при сложении дадут девять. Итак:

2 × 9 = 18, а 1 + 8 = 9

3 × 9 = 27, а 2 + 7 = 9

4 × 9 = 36, а 3 + 6 = 9

5 × 9 = 45, а 4 + 5 = 9

6 × 9 = 54, а 5 + 4 = 9

7 × 9 = 63, а 6 + 3 = 9

8 × 9 = 72, а 7 + 2 = 9

9 × 9 = 81, а 8 + 1 = 9

10 × 9 = 90, а 9 + 0 = 9.

Заметим, что 9 × 11 дает 99, и сумма чисел в этом случае равна 18, а не 9, но зато при сложении 1 и 8 получается 9.

9 × 12 = 108, и 1 + 0 + 8 = 9

9 × 13 = 117, и 1 + 1 + 7 = 9

9 × 14 = 126, и 1 + 2 + 6 = 9

И так далее до бесконечности.

Господин де Меван открыл другое свойство того же числа 9. Если поменять местами цифры, составляющие некое число, и вычесть полученное число из первоначального, то разность будет равна или же кратна 9 и сумма чисел, составляющих эту кратную 9 разность, будет также равна 9.

Например, возьмем число 21, поменяем цифры местами и получим 12, вычтем 12 из 21, разность будет равна 9. Возьмем 63, переставим цифры и отнимем 36 из 63, получим 27, кратное 9, а 2 + 7 = 9. Теперь возьмем 13, преобразовав его, получим 31, разность этих чисел составляет 18, то есть дважды девять.

Такое же свойство, наблюдаемое у двух чисел, измененных подобным образом, обнаруживается у тех же чисел, возведенных в степень.

Возьмем снова 21 и 12. 21 в квадрате дает 441, а квадрат 12 равен 144. Разность при вычитании 144 из 441 составляет 297, кратное 9. Кроме того, числа, составляющие результаты этих возведений в степень, при сложении дают 9. 21 в кубе равно 9261, а 12 в кубе будет 1728, их разность составляет 7533, кратное 9.

Число 37 также имеет некоторые замечательные свойства, когда его умножают на 3 или на число кратное 3 (до 27). Произведение в этом случае составляют три одинаковые цифры. Зная об этом свойстве числа 37, искать произведение становится проще, ибо достаточно просто умножить первую цифру умножаемого на первую цифру множителя[112]. Дальнейшее умножение уже бессмысленно, поскольку достаточно просто написать справа от полученной цифры такую же цифру еще дважды — ибо одна и та же цифра будет занимать место единицы, десятка и сотни.

Приведем для примера следующую таблицу:

37, умноженное на 3, дает 111, а 3, умноженное на 1, равно 3,

37, умноженное на 6, дает 222, а 3, умноженное на 2, равно 6,

37, умноженное на 9, дает 333, а 3, умноженное на 3, равно 9,

37, умноженное на 12, дает 444, а 3, умноженное на 4, равно 12,

37, умноженное на 15, дает 555, а 3, умноженное на 5, равно 15,

37, умноженное на 18, дает 666, а 3, умноженное на 6, равно 18,

37, умноженное на 21, дает 777, а 3, умноженное на 7, равно 21,

37, умноженное на 24, дает 888, а 3, умноженное на 8, равно 24,

37, умноженное на 27, дает 999, а 3, умноженное на 9, равно 27.

Исключительные свойства разных чисел, которые при сложении дают одинаковую сумму, послужили причиной использования магических квадратов в качестве талисманов. Хотя все можно объяснить с точки зрения математики, многие авторы писали о них как о «загадочных».

Я приведу три примера магических квадратов:

2    7    6

9    5    1

4    3    8

Эти девять цифр, расположенных по горизонтали, дадут в сумме в каждом ряду 15. Если сложить числа в каждой колонке, тоже получится 15. И при сложении трех цифр, составляющих каждую диагональ, сумма будет равна 15.

1    2    3    4

2    3    2    3

4    1    4    1

3    4    1    2

Сумма равна 10

1    7    13    19    25

18    24    5    6    12

10    11    17    23    4

22    3    9    15    16

14    20    21    2    8

Сумма равна 65

Лишь связи определенных чисел с религиозными догмами, даже если не принимать во внимание их необыкновенных свойств, оказалось достаточно, чтобы породить различные суеверия. Поскольку на Тайной вечере за столом присутствовало тринадцать человек и один из них предал своего Учителя, а затем повесился, то у христиан считается несчастливым, когда за столом сидит тринадцать обедающих, ибо это означает, что один из них умрет прежде, чем закончится год. Вовенарг сказал: «После того как я увидел, как тринадцать гениальных людей не осмеливались сесть за стол, поскольку их было тринадцать, никакие заблуждения прошлого и настоящего меня не удивляют».

Девять, священное число в буддизме, окружено благоговением среди монголов и китайцев, последние кланяются девять раз, представая перед своим императором.

Три считается священным у индуистов и христиан из-за триединства Бога.

Пифагор учил, что каждое число обладает своим характером, достоинствами и свойствами.

Он говорил: «Единица, или монада, — это первопричина и конец всего, это звено, которое связывает воедино цепь причин, это символ тождества, равенства, существования, сохранения и всеобщей гармонии. Не будучи делимой, монада воплощает Божественность, она предвещает также порядок, мир и покой, которые основаны на единстве чувств. Соответственно, ЕДИНИЦА — это хорошее начало».

«Число ДВА, или диада, — начало противоположностей, является символом многообразия, или неравенства, разделения и разъединения. Следовательно, два — это злое начало, число, предвещающее несчастье, характеризующее хаос, беспорядок и изменение».

«ТРИ, или триада, — это первое нечетное число, содержащее величайшие тайны, поскольку все состоит из трех веществ; оно представляет Бога, душу мира, дух человека».

1 ... 101 102 103 ... 106
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Мифы и легенды Средневековья - Сэбайн Бэринг-Гулд», после закрытия браузера.

Комментарии и отзывы (0) к книге "Мифы и легенды Средневековья - Сэбайн Бэринг-Гулд"