Топ за месяц!🔥
Книжки » Книги » Домашняя » Происхождение жизни. От туманности до клетки - Михаил Никитин 📕 - Книга онлайн бесплатно

Книга Происхождение жизни. От туманности до клетки - Михаил Никитин

353
0
На нашем литературном портале можно бесплатно читать книгу Происхождение жизни. От туманности до клетки - Михаил Никитин полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 97 98 99 ... 108
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 22 страниц из 108



Другой хищный жгутиконосец приручил красную водоросль. Его потомки дали начало бурым, золотистым, диатомовым, криптофитовым, гаптофитовым водорослям и динофлагеллятам. Хлоропласты всех этих водорослей имеют три или четыре мембраны. У криптофитовых хлоропласты содержат нуклеоморф, как у Chlorarachnion. Многие группы динофлагеллятов, даже получив фотосинтезирующих симбионтов, возвращались к хищничеству или переходили к паразитизму.

От последних произошли споровики – группа одноклеточных, к которым относится возбудитель малярии. Предки споровиков, как и ряд других водорослей, перенесли в хлоропласт синтез липидов. Поэтому, отказавшись от фотосинтеза, потерять хлоропласт полностью они не смогли. Даже у малярийного плазмодия, предки которого сотни миллионов лет были паразитами, сохраняется апикопласт – маленький, покрытый четырьмя мембранами бесцветный остаток хлоропласта со своей кольцевой ДНК.

Среди вернувшихся к хищному образу жизни динофлагеллят есть множество примеров повторного приобретения водорослей-симбионтов. Так, Lepidodinium завел себе зеленую водоросль, Karenia – гаптофитовую, а Dinophysis – криптофитовую (Keeling, 2004).

Вершиной же симбиотического таланта эукариот можно считать клетку динофлагелляты Kryptoperidinium. Эта одноклеточная водоросль происходит от динофлагеллят, которые имели хлоропласт – потомок красной водоросли. Затем эти динофлагелляты вернулись к хищному образу жизни. Старый хлоропласт остался у них в качестве маленького фоторецептора (глазка). Потом эти хищные жгутиконосцы вступили в симбиоз с диатомовой водорослью, которая сохранила ядро и значительную часть генома. В клетке Kryptoperidinium под управлением ядра находятся в общей сложности пять «чужих» геномов: свой митохондриальный, старого хлоропласта (фоторецептор), ядерный симбионта-диатомеи, митохондриальный геном симбионта-диатомеи и хлоропластный геном симбионта-диатомеи (рис. 18.16, Figueroa et al., 2009). Деление ядер хозяина и симбионта строго синхронизировано. Более того, при половом размножении происходят мейоз и слияние как главных ядер половых клеток, так и ядер симбионтов.



Наличие цитоскелета и сложной системы регуляции генов позволило эукариотным клеткам объединиться в крупные многоклеточные организмы. Сначала это были нитчатые и лентовидные водоросли, которые ускорили накопление кислорода в атмосфере. Новый уровень кислородного насыщения среды открыл возможность появления многоклеточных животных. За этим последовало радикальное усложнение биосферы («Кембрийский взрыв»), когда за короткое время появились десятки типов животных, и некоторые из ранних представителей быстро достигли метровых размеров. После «Кембрийского взрыва» эволюция шла с ускорением, и с тех пор облик Земли определяют многоклеточные растения и животные.

Заключение: о случайности и закономерности в эволюции, внеземных цивилизациях и о том, зачем Земле люди

Одна из загадок, будоражащих умы человечества, – это молчание космоса. Мы до сих пор не нашли никаких достоверных следов других цивилизаций. Если все процессы на пути от неживой материи до цивилизации разумных существ закономерны, то только в нашей Галактике, содержащей примерно 100 млрд звезд, должно существовать множество разумных видов. Если хоть одна цивилизация развивается до строительства межзвездных кораблей, то за небольшое по космическим меркам время – считанные миллионы лет – она может заселить всю Галактику. Но мы не встретили инопланетян и не нашли следов посещения ими Земли в прошлом.

В 1960 году шло активное обсуждение программы поиска внеземного разума (SETI). Астроном Фрэнк Дональд Дрейк предложил использовать для оценки количества внеземных цивилизаций, которые мы имеем шанс найти, уравнение, которое впоследствии было названо его именем. Уравнение Дрейка выглядит так:

N = R × fp × ne × fl × fi × fc × L,

где

N – количество разумных цивилизаций, готовых вступить в контакт;

R – количество звезд, образующихся в Галактике за год;

fp – доля звезд, обладающих планетами;

ne – среднее количество планет с подходящими для жизни условиями в планетной системе;

fl – вероятность зарождения жизни на планете с подходящими условиями;

fi – вероятность развития жизни до разумных форм;

fc – вероятность развития разумной жизни до состояния, когда она способна к контакту и ищет его;

L – время жизни цивилизации, способной к контакту.

Величина R была известна с хорошей точностью уже в 1960 году – в нашей Галактике в среднем возникает семь звезд в год. Два следующих множителя Дрейк оценил в 0,5 планетных систем на звезду и две планеты, пригодные для жизни, на систему. Остальные четыре величины оценить гораздо сложнее. Если принять, как это сделал Дрейк, вероятность возникновения жизни на подходящей планете в 1, две последние вероятности – в 0,01, а время жизни цивилизации, способной к контакту, в 10 000 лет, то можно ожидать, что сейчас в нашей Галактике есть 10 цивилизаций, способных к контакту. Исходя из этих оценок развивалась программа SETI, основанная прежде всего на анализе сигналов, принимаемых радиотелескопами.

Сейчас мы можем точнее оценить многие множители уравнения Дрейка. Тысячи открытых экзопланет подтверждают старую оценку fp = 0,5. Однако подавляющее большинство этих планет находится слишком близко к звезде, и они слишком горячи, чтобы быть обитаемыми. Поэтому современные оценки ne более пессимистичны, чем предполагали в 1960-е годы, и лежат в интервале 0,001–0,1 (см. главу 2).

Ближе к теме основной части книги относятся следующие два множителя – вероятность возникновения жизни на планете, пригодной для этого, и вероятность развития возникшей жизни до разумных форм. Вероятность возникновения жизни (fl) оценить сложно по двум причинам. Во-первых, мы знаем только об одном таком событии. По одному событию нельзя оценить его вероятность. Во-вторых, трудно определить, какие планеты считать «подходящими». Например, в современной Солнечной системе Марс и Европа подходят для жизни некоторых земных микробов, но жизнь земного типа там сейчас возникнуть не может.

Дрейк взял вероятность возникновения жизни на «подходящей» планете за единицу, т. е. имел в виду «подходящую для возникновения жизни» планету, а не «подходящую для существования». Долю планет, подходящих для существования жизни земного типа, астрономы сейчас оценивают в пределах от 0,1 до 0,001. Доля подходящих для возникновения жизни планет явно меньше, и неизвестно, насколько. Поэтому большие надежды возлагаются на исследования Марса. Это единственное кроме Земли место в Солнечной системе, где теоретически могла появиться жизнь земного типа (водно-углеродная с ДНК и белками). Если следы возникновения жизни на Марсе будут найдены, значит, в Солнечной системе две планеты подходили для возникновения жизни, а значит, и в Галактике их много. Если же Земля уникальна в Солнечной системе, то трудно оценить, насколько она уникальна в Галактике.

Ознакомительная версия. Доступно 22 страниц из 108

1 ... 97 98 99 ... 108
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Происхождение жизни. От туманности до клетки - Михаил Никитин», после закрытия браузера.

Комментарии и отзывы (0) к книге "Происхождение жизни. От туманности до клетки - Михаил Никитин"