В исходной версии парадокс Рассела касается множеств, т. е. совокупностей, в чем-то сходных друг с другом объектов. Относительно произвольного множества можно задать вопрос: является оно своим собственным элементом или нет? Так, множество лошадей не есть лошадь и потому оно не собственный элемент. Но множество идей есть идея и содержит само себя; каталог каталогов — это опять-таки каталог. Множество всех множеств также есть собственный элемент, поскольку оно — множество. Разделив все множества на те, которые являются собственными элементами, и те, которые не таковы, можно спросить: множество всех множеств, не являющихся собственными элементами, содержит себя в качестве элемента или нет? Ответ, однако, оказывается обескураживающим: это множество есть свой элемент только в том случае, когда оно не является таким элементом.
Данное рассуждение опирается на допущение, что есть множество всех множеств, не являющихся собственными элементами. Полученное из этого допущения противоречие означает, что такое множество не может существовать. Но почему столь простое и ясное множество невозможно? В чем заключается различие между возможными и невозможными множествами?
На эти вопросы исследователи отвечают по-разному. Открытие парадокса Рассела и других парадоксов математической теории множеств привело к решительному пересмотру ее оснований. Оно послужило, в частности, стимулом для исключения из ее рассмотрения «слишком больших множеств», подобных множеству всех множеств, для ограничения правил оперирования с множествами и т. д. Несмотря на большое число предложенных к настоящему времени способов устранения парадоксов из теории множеств, полного согласия в вопросе о причинах их возникновения пока нет. Нет соответственно и единого, не вызывающего возражений способа предупреждать их появление.
Приведенное выше рассуждение о парикмахере опирается на допущение, что такой парикмахер существует. Полученное противоречие означает, что это допущение ложно, и нет такого жителя деревни, который брил бы всех тех и только тех ее жителей, которые не бреются сами.
Обязанности парикмахера не кажутся на первый взгляд противоречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не является все-таки парадоксальным. Условие, которому должен удовлетворять «деревенский брадобрей», на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой в ней нет человека, который был бы старше самого себя или который родился бы до своего рождения.
Рассуждение о парикмахере может быть названо «псевдопарадоксом». По своему ходу оно строго аналогично парадоксу Рассела и этим интересно. Но оно все-таки не является подлинным парадоксом.
Каталог библиографических каталогов
Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге.
Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки на самих себя. Должен ли такой каталог включать ссылку на себя?
Нетрудно показать, что идея создания такого каталога неосуществима: он просто не может существовать, поскольку должен одновременно и включать ссылку на себя и не включать.
Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс.
Допустим, что в какой то момент был составлен каталог, скажем K1, включающий все отличные от него каталоги, не содержащие ссылки на себя. С созданием K1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что K1 не является ее решением. Он не упоминает один из таких каталогов — самого себя. Включив в K1 это упоминание о нем самом, получим каталог К2. В нем упоминается K1, но не сам К2. Добавив к К2 такое упоминание, получим K3, который опять-таки неполон из-за того, что не упоминает самого себя. И так далее без конца.
Парадоксы Греллинга и Берри
Интересный логический парадокс был открыт немецкими логиками К. Греллингом и Л. Нельсоном («парадокс Греллинга»). Этот парадокс можно сформулировать очень просто.
Некоторые слова, обозначающие свойства, обладают тем самым свойством, которое они называют. Например, прилагательное «русское» само является русским, «многосложное» — само многосложное, а «пятислоговое» само имеет пять слогов. Такие слова, относящиеся к самим себе, называются «самозначными», или «аутологическими». Подобных слов не так много, в подавляющем большинстве прилагательные не обладают называемым ими свойством. «Новое» не является, конечно, новым, «горячее» — горячим, «однослоговое» — состоящим из одного слога, «английское» — английским. Слова, не имеющие свойства, обозначаемого ими, называются «инозначными», или «гетерологическими». Очевидно, что все прилагательные, обозначающие свойства, неприложимые к словам, будут гетерологическими.
Это разделение прилагательных на две группы кажется ясным и не вызывает возражений. Оно может быть распространено и на существительные: «слово» является словом, «существительное» — существительным, но «часы» — это не часы и «глагол» — не глагол.
Парадокс возникает, как только задается вопрос: к какой из двух групп относится само прилагательное «гетерологическое»? Если оно аутологическое, оно обладает обозначаемым им свойством и должно быть гетерологическим. Если же оно гетерологическое, оно не имеет называемого им свойства и должно быть поэтому аутологическим. Налицо парадокс.
Оказалось, что парадокс Греллинга был известен еще в средние века как антиномия выражения, не называющего самого себя.
Еще одна, внешне простая антиномия была указана в самом начале прошлого века Д. Берри.
Множество натуральных чисел бесконечно. Множество же тех имен этих чисел, которые имеются, например, в русском языке и содержат меньше чем, допустим, сто слов, является конечным. Это означает, что существуют такие натуральные числа, для которых в русском языке нет имен, состоящих менее чем из ста слов. Среди этих чисел есть, очевидно, наименьшее число. Его нельзя назвать посредством русского выражения, содержащего менее ста слов. Но выражение: «Наименьшее натуральное число, для которого не существует в русском языке его сложное имя, слагающееся менее чем из ста слов», является как раз именем этого числа! Это имя только что сформулировано в русском языке и содержит только девятнадцать слов. Очевидный парадокс: названным оказалось то число, для которого нет имени!
5. О чем говорят парадоксы
Никакого исчерпывающего перечня логических парадоксов не существует, да он и невозможен.
Рассмотренные парадоксы — это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем будут открыты и многие другие и даже совершенно новые их типы. Само понятие парадокса не является настолько определенным, чтобы удалось составить список хотя бы уже известных парадоксов.