Ознакомительная версия. Доступно 21 страниц из 103
Красочные карты в кодексах ацтеков
Boone, E. H. (2010). Stories in red and black: Pictorial histories of the Aztecs and Mixtecs. Austin: University of Texas Press.
Синтаксис и семантика карт-схем
Denis, M. (1997). The description of routes: A cognitive approach to the production of spatial discourse. Cahiers de Psychologie, 16, 409–458.
Tversky, B., & Lee, P. U. (1998). How space structures language. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III [Lecture Notes in Computer Science] (Vol. 1404, pp. 157–175). Berlin, Germany: Springer, Berlin, Heidelberg.
Tversky, B., & Lee, P. U. (1999). Pictorial and verbal tools for conveying routes. In International Conference on Spatial Information Theory (pp. 51–64). Berlin, Germany: Springer, Berlin, Heidelberg.
Эмпирический поиск когнитивных принципов разработки карт
Agrawala, M., & Stolte, C. (2001, August). Rendering effective route maps: Improving usability through generalization. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 241–249.
Tversky, B., Agrawala, M., Heiser, J., Lee, P., Hanrahan, P., Phan, D., Daniel, M.-P. (2006). Cognitive design principles for automated generation of visualizations. In G. L. Allen (Ed.), Applied spatial cognition: From research to cognitive technology (pp. 53–75). New York, NY: Psychology Press.
«Три П» (производство, предпочтение, производительность) при создании дизайна
Kessell, A., & Tversky, B. (2011). Visualizing space, time, and agents: Production, performance, and preference. Cognitive Processing, 12(1), 43–52.
Интерпретация кости Ишанго
Pletser, V., & Huylebrouck, D. (1999). The Ishango artefact: The missing base 12 link. Forma-Tokyo, 14(4), 339–346.
Pletser, V., & Huylebrouck, D. (2008, January). An interpretation of the Ishango rods. In Proceedings of the Conference Ishango, 22000 and 50 Years Later: The Cradle of Mathematics (pp. 139–170). Brussels, Belgium: Royal Flemish Academy of Belgium, KVAB.
Развитие понимания количества
Gelman, R., & Gallistel, C. R. (1986). The child’s understanding of number. Cambridge, MA: Harvard University Press.
Формальные системы обозначений – это схемы
Landy, D., & Goldstone, R. L. (2007). Formal notations are diagrams: Evidence from a production task. Memory & Cognition, 35(8), 2033–2040.
Люди используют пространство для решения математических задач; доказательства – это истории
Landy, D., & Goldstone, R. L. (2007). How abstract is symbolic thought? Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 720.
Восточная окружающая среда сложнее западной в глазах представителей как восточной, так и западной культур
Miyamoto, Y., Nisbett, R. E., & Masuda, T. (2006). Culture and the physical environment: Holistic versus analytic perceptual affordances. Psychological Science, 17(2), 113–119.
Китайские арифметические схемы оцениваются как более сложные по сравнению с американскими
Wang, E. (2011). Culture and math visualization: Comparing American and Chinese math images. (Unpublished master’s thesis). Columbia Teachers College, New York, NY.
Zheng, F, (2015). Math visualizations across cultures: Comparing Chinese and American math images. (Unpublished master’s thesis). Columbia Teachers College, New York, NY.
Измерения и вычисления могут устранить некоторые искажения и ошибки
Kahneman, D., & Tversky, A. (2013). Choices, values, and frames. In W. Ziemba & L. C. MacLean (Eds.), Handbook of the fundamentals of financial decision making: Part I (pp. 269–278). Hackensack, NJ: World Scientific Publishing Co.
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.
Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453–458.
Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90(4), 293.
В геометрии древних слова служили лишь примечаниями к схемам, а не наоборот
Netz, R. (2003). The shaping of deduction in Greek mathematics: A study in cognitive history (Vol. 51). Cambridge, England: Cambridge University Press.
Пространственные мысленные модели
Johnson-Laird, P. N. (1980). Mental models in cognitive science. Cognitive Science, 4(1), 71–115.
Tversky, B. (1991). Spatial mental models. Psychology of Learning and Motivation, 27, 109–145. https://doi.org/10.1016/S0079–7421(08)60122-X.
Диаграммы Эйлера и рассуждения
Chapman, P., Stapleton, G., Rodgers, P., Micallef, L., & Blake, A. (2014). Visualizing sets: An empirical comparison of diagram types. In T. Dwyer, H. Purchase, & A. Delaney (Eds.), Diagrammatic representation and inference. Diagrams 2014, Lecture Notes in Computer Science (Vol. 8578, pp. 146–160). Berlin, German: Springer, Berlin, Heidelberg.
Sato, Y., Mineshima, K., & Takemura, R. (2010). The efficacy of Euler and Venn diagrams in deductive reasoning: Empirical findings. In A. K. Goel, M. Jamnik, & N. H. Narayanan (Eds.), Diagrammatic representation and inference: 6th International Conference, Diagrams 2010, Portland, OR, USA, August 9–11, 2010, Proceedings (pp. 6–22). Berlin, Germany: Springer-Verlag Berlin Heidelberg. doi:10.1007/978–3–642–14600–8.
Построение силлогизма с использованием диаграмм
Barwise, J., & Etchemendy, J. (1994). Hyperproof: For Macintosh. Center for the Study of Language and Inf.
Giardino, V. (2017). Diagrammatic reasoning in mathematics. In L. Magnani & T. Bertolotti (Eds.), Springer handbook of model-based science (pp. 499–522). New York, NY: Springer.
Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: A “cognitive dimensions” framework. Journal of Visual Languages & Computing, 7(2), 131–174.
Shin, S. J. (1994). The logical status of diagrams. Cambridge, England: Cambridge University Press.
Stenning, K., & Lemon, O. (2001). Aligning logical and psychological perspectives on diagrammatic reasoning. Artificial Intelligence Review, 15(1–2), 29–62.
Ознакомительная версия. Доступно 21 страниц из 103