Ознакомительная версия. Доступно 20 страниц из 99
Фундаментальные различия бактерий и архей
Edgell, D. R., and W. F. Doolittle Archaea and the origin(s) of DNA replication proteins // Cell 89: 995–998 (1997).
Koga, Y., Kyuragi, T., Nishihara, M., and N. Sone Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent // Journal of Molecular Evolution 46: 54–63 (1998).
Leipe, D. D., Aravind, L., and E. V. Koonin Did DNA replication evolve twice independently? // Nucleic Acids Research 27: 3389–3401 (1999).
Lombard, J., López-García, P., and D. Moreira The early evolution of lipid membranes and the three domains of life // Nature Reviews Microbiology 10: 507–515 (2012).
Martin, W., and M. J. Russell On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells // Phil. Trans. R. Soc. B 358: 59–83 (2003).
Sousa, F. L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I. A. C., Allen, J. F., Lane, N., and W. F. Martin Early bioenergetic evolution // Phil. Trans. R. Soc. B 368: 20130088 (2013).
Глава 3. Энергия и начало жизни
Энергетические потребности на заре жизни
Lane, N., Allen, J. F., and W. Martin How did LUCA make a living? Chemiosmosis in the origin of life // BioEssays 32: 271–280 (2010).
Lane, N., and W. Martin The origin of membrane bioenergetics // Cell 151: 1406–1416 (2012).
Martin, W., Sousa, F. L., and N. Lane Energy at life’s origin // Science 344: 1092–1093 (2014).
Martin, W. F. Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation // FEBS Letters 586: 485–493 (2012).
Russell, M., ed. Origins: Abiogenesis and the Search for Life. Cosmology Science Publishers, Cambridge MA (2011).
Эксперимент Миллера – Юри и “мир РНК”
Joyce, G. F. RNA evolution and the origins of life // Nature 33: 217–224 (1989).
Miller, S. L. A production of amino acids under possible primitive Earth conditions // Science 117: 528–529 (1953).
Orgel, L. E. Prebiotic chemistry and the origin of the RNA world // Critical Reviews in Biochemistry and Molecular Biology 39: 99–123 (2004).
Powner, M. W., Gerland, B., and J. D. Sutherland Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions // Nature 459: 239–242 (2009).
Термодинамика далеких от равновесия процессов
Morowitz, H. Energy Flow in Biology: Biological Organization as a Problem in Thermal Physics. Academic Press, New York (1968).
Prigogine, I. The End of Certainty: Time, Chaos and the New Laws of Nature. Free Press, New York (1997).
Russell, M. J., Nitschke, W., and E. Branscomb The inevitable journey to being // Phil. Trans. R. Soc. B 368: 20120254 (2013).
Происхождение катализа
Cody, G. Transition metal sulfides and the origins of metabolism // Annual Review Earth and Planetary Sciences 32: 569–599 (2004).
Russell, M. J., Allen, J. F., and E. J. Milner-White Inorganic complexes enabled the onset of life and oxygenic photosynthesis / In: Allen, J. F., Gantt, E., Golbeck, J. H., and B. Osmond Energy from the Sun: 14th International Congress on Photosynthesis. Springer, Heidelberg (2008).
Russell, M. J., and W. Martin The rocky roots of the acetyl-CoA pathway // Trends in Biochemical Sciences 29: 358–363 (2004).
Реакции дегидратации в воде
Benner, S. A., Kim, H.-J., and M. A. Carrigan Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA // Accounts of Chemical Research 45: 2025–2034 (2012).
Pratt, A. J. Prebiological evolution and the metabolic origins of life // Artificial Life 17: 203–217 (2011).
Zwart, I. I. de, Meade, S. J., and A. J. Pratt Biomimetic phosphoryl transfer catalysed by iron(II) – mineral precipitates // Geochimica et Cosmochimica Acta 68: 4093–4098 (2004).
Формирование протоклеток
Budin, I., Bruckner, R. J., and J. W. Szostak Formation of protocell-like vesicles in a thermal diffusion column // Journal of the American Chemical Society 131: 9628–9629 (2009).
Errington, J. L-form bacteria, cell walls and the origins of life // Open Biology 3: 120143 (2013).
Hanczyc, M., Fujikawa, S., and J. Szostak Experimental models of primitive cellular compartments: encapsulation, growth, and division // Science 302: 618–622 (2003).
Mauer, S. E., and P. A. Monndard Primitive membrane formation, characteristics and roles in the emergent properties of a protocell // Entropy 13: 466–484 (2011).
Szathmáry, E., Santos, M., and C. Fernando Evolutionary potential and requirements for minimal protocells // Topics in Current Chemistry 259: 167–211 (2005).
Возникновение репликации
Cairns-Smith, G. Seven Clues to the Origin of Life. Cambridge University Press, Cambridge (1990).
Costanzo, G., Pino, S., Ciciriello, F., and E. Di Mauro Generation of long RNA chains in water // Journal of Biological Chemistry 284: 33206–33216 (2009).
Koonin, E. V., and W. Martin On the origin of genomes and cells within inorganic compartments // Trends in Genetics 21: 647–654 (2005).
Mast, C. B., Schink, S., Gerland, U., and D. Braun Escalation of polymerization in a thermal gradient // Proceedings of the National Academy of Sciences USA 110: 8030–8035 (2013).
Mills, D. R., Peterson, R. L., and S. Spiegelman An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule // Proceedings National Academy Sciences USA 58: 217–224 (1967).
Открытие глубоководных гидротермальных источников
Baross, J. A., and S. E. Hoffman Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life // Origins Life Evolution of the Biosphere 15: 327–345 (1985).
Ознакомительная версия. Доступно 20 страниц из 99