Все, что Форбс делал или говорил, тщательно усваивалось Максвеллом, которого он научил быть дисциплинированным в работе с данными и постановке экспериментов. Когда его учитель умер 21 декабря 1868 года, Максвелл сказал, что он «любил Джеймса Форбса».
Герой этой книги также ходил на уроки математики Филипа Келланда и уроки химии к некоему профессору Грегори, который вел занятия, не ступая в лабораторию: это он поручал во внеурочное время тому, кого называл «Кемп-практик».
В свою очередь господин Кемп был склонен описывать процессы, преподаваемые Грегори на уроках, как «бесполезные и вредные, придуманные химиками, желающими что-нибудь сделать». Из этих разочаровывающих занятий Джеймс вынес урок на всю жизнь: работа в лаборатории не только необходима для получения хорошего научного образования, но и должна быть составной частью самих занятий, а не являться чем-то необычным.
Я никогда не отговаривал никого от эксперимента; если человек не найдет то, что ищет, он может найти что-то другое.
Максвелл о свободе, которую он давал студентам Кавендишской лаборатории при постановке экспериментов
Пытливый ум Джеймса не мог питаться только университетскими занятиями. Его интеллектуальное образование также включало чтение классиков: он изучал «Оптику» Ньютона, «Дифференциальное исчисление» Коши, Трактат о механике» Пуассона и «Аналитическую теорию тепла» Фурье; он был так захвачен этой последней книгой, что потратил немалую сумму в 25 шиллингов на приобретение собственного экземпляра.
Чтение занимало значительную часть его времени, которое он посвящал не только научным, но также и философским работам, таким как «Левиафан» Гоббса или «Теория нравственных чувств» Адама Смита. Джеймс также не оставил латынь и греческий. Кроме того, на досуге он читал романы и поэзию.
Его влечение к науке привело к построению маленькой лаборатории над зданием, отведенным его отцом для стирки и глажки одежды обитателей фермы. Там он проводил долгие каникулы шотландских университетов, которые начинались в конце апреля и длились до начала ноября. Таким образом студенты могли помогать семьям в самое тяжелое для сельского хозяйства время — весной и летом. Максвелл так описывал свою лабораторию:
«У меня есть старая дверь, которая держится на двух бочках, и два стула, из которых один надежный, и слуховое окно, которое я могу открывать и закрывать.
На двери, или столе, много мисок, кувшинов, тарелок, банок: в них содержится вода, соль, сода, серная кислота, медный купорос, графит, также разбитое стекло, железо, медные провода, пчелиный воск, воск для запечатывания, сланец, древесная смола, древесный уголь, линза, гальванический аппарат Сми [электрический прибор того времени, включавший одну батарею] и несметное число маленьких жучков, пауков и мокриц, которые падают в разные жидкости и умирают от отравления».
Это была отличная практика. Джеймс обвивал медью старые банки с вареньем, экспериментируя с электричеством, а также развлекал местных детей химическими опытами, позволяя им плюнуть в смесь двух белых порошков и наблюдать, как они меняют цвет на зеленый. Но более всего привлекал его внимание поляризованный свет — световые волны, электромагнитные колебания которых распространяются только в одном направлении. Мы можем легко наблюдать его с помощью двух солнечных очков с поляризованными стеклами. Если мы поставим их друг перед другом так, что одно стекло окажется напротив другого, и начнем вращать одно из них, то в какой-то момент свет совсем перестанет проходить. Это происходит потому, что два стекла позволяют пройти только свету, колебание волн которого осуществляется в вертикальном направлении. Вращением второго стекла мы поместили его в положение в 90° относительно первого, следовательно, оно не позволит пройти свету (рисунок 1). Максвелла завораживали цвета, которые получаются при освещении таким светом быстроохлажденных неотпущенных стекол (стекол, в которых сохранились внутренние напряжения). Но его интерес выходил за грани чисто эстетического: он хотел понять структуру и распределение таких напряжений. Чтобы сделать это, Джеймс брал куски стекла, нагревал их докрасна и затем быстро остужал.
РИСУНОК 1:
Чтобы понятъ поляризацию света, надо представить себе веревку, которая колеблется вертикально (то ость вартикально поляризована) и проходит через два заграждения.
РИСУНОК 2:
Благодаря отражению пучка света от стекла он оказывается поляризованным
Вначале у него не было никаких приборов, которые позволили бы ему получить поляризованный свет, так что ему пришлось импровизировать. Максвелл знал, что когда пучок света отражается под некоторым углом от поверхности стекла, часть отраженного пучка оказывается поляризованной (рисунок 2). Так что он сконструировал поляризатор, который состоял из спичечного коробка и двух кусков железа, соединенных воском для фиксации под нужным углом. Кроме того, он знал, что существуют природные кристаллы, которые поляризуют свет, когда он проходит через них; молодой ученый провел немало времени, шлифуя тонкие пластинки таких кристаллов, чтобы получить нужный эффект. Однажды он записал:
«Вчера мы были в замке Дуглас, и я достал кристаллы селитры, которые сегодня разрезал на пластинки. Надеюсь увидеть кольца».
Изображения, полученные им данным способом, были еще более завораживающими. Чтобы сохранить их, ученый использовал камеру-люциду. Она была описана немецким астрономом Иоганном Кеплером (1571-1630) в книге «Диоптрика», однако оказалась забыта до тех пор, пока в 1806 году ее вновь не изобрел британский физик Уильям Хайд Волластон (1766-1828). Он разбогател, совершенствуя методы обработки платины, а также открыл палладий и родий. Джеймс зарисовал цветные изображения акварелью и послал их Уильяму Николю, знаменитому оптику, с которым его познакомил дядя за два года до этого. Николь был так впечатлен его работой, что подарил ему две своих призмы из исландского шпата, и этот подарок Джеймс ценил всю жизнь.
Но зарисовка акварелью картин, созданных поляризованных светом, не была целью, которую преследовал Максвелл, он скорее искал принцип чего-то более глубокого. Смог бы он воспользоваться своим методом, чтобы увидеть механические напряжения твердых тел различных форм, подверженных нагрузкам? Джеймс знал, что данная тема очень интересовала инженеров. Для проверки этой идеи ему нужно было прозрачное твердое тело, которому он мог бы придавать различные формы: растягивать, скручивать, сжимать... Подойдет ли желатин? Получить его было несложно: достаточно пойти на кухню. Итак, он сделал кольцо из желатина и скрутил его, чтобы создать в нем напряжение. После этого Максвелл пропустил сквозь него поляризованный свет и смог наглядно увидеть области напряжения: он разработал метод фотоупругости, хорошо известный сегодня инженерам.