Теория графов — это раздел математики, возникший в XVIII веке. Недавно он здорово пригодился в анализе разного рода сложных сетей, особенно сетей мозга.
Сети состоят из узлов, а узлы связаны между собой так называемыми ребрами — абстрактными (или физическими) линиями. Ребро между двумя узлами дает возможность передачи информации — иногда только в одном направлении. Такое ребро называется ориентированным. В других случаях информация может течь в обе стороны, и тогда это неориентированное ребро. Теория графов весьма полезна тем, что ее можно применять в разных областях: при изучении воздушного транспорта, Интернета и социальных сетей. Когда элементы системы формируют сложную сеть, на первый план выходит не их внутреннее строение, а отношения между ними.
В мозге узлы являются отдельными анатомическими структурами, которые связаны ребрами в виде аксонов. Области мозга, физически соединенные между собой, называются «структурными сетями». Как в теле содержатся разные органы: сердце, легкие, — так и в мозге есть разные отделы. Эти отделы мозга соединены длинными нервными волокнами, похожими на пальцы пришельцев. Структурная сеть мозга состоит из локальных кластеров. Вы наверняка знаете о таких зонах мозга, как префронтальная кора.
Можно вообразить, будто узлы — это известные крупные аэропорты, такие как чикагский, лондонский или франкфуртский. Они огромны по сравнению с региональными аэропортами и принимают гораздо больше рейсов. Вы когда-нибудь летали напрямую из Портленда, штат Орегон, или Колумбуса, штат Огайо? Обычно приходится лететь через Чикаго (или другой узел, например, через Атланту).
Мозг работает так же. Есть некие структуры с обширными связями — узлы. Когда вы бездельничаете, ваши «мозговые аэропорты» «оживают». Больше крови, богатой кислородом и сахаром, поступает к узлам сети пассивного режима работы, когда вы расслабляетесь и мечтаете.
За последние двадцать лет такие достижения техники, как МРТ и ПЭТ (позитронно-эмиссионная томография), позволили ученым наблюдать живой мозг изнутри и делать снимки его активности или измерять, сколько энергии потребляют определенные части мозга, пока люди участвуют в эксперименте. Теперь мы знаем, что каждая анатомическая структура имеет свои задачи.
Представьте себе сердце. Это орган, который перекачивает кровь. В сердце есть отдельные участки, наделенные собственными функциями. Например, левое предсердие закачивает насыщенную кислородом кровь в аорту, а та выталкивает кровь дальше циркулировать по организму.
Похожим образом префронтальная кора вовлечена в так называемое «высшее» мышление: она отвечает за рассуждение, краткосрочную память, контроль над эмоциями, планирование и привнесение значимых воспоминаний в сознание. Другая область мозга, гиппокамп (отдельные его участки активны во время отдыха), отвечает за создание долгосрочных воспоминаний и хранит их в другой части мозга, в новой коре.
Префронтальная кора решает, когда нужно вспомнить определенную информацию, записанную в новой коре. Каждая из ее областей разделена на зоны поменьше, которые сообща выполняют более крупные задачи вроде «вспомнить имя женщины, чей ребенок ходит в один детский садик с моим сыном, которую я вижу каждый день и которая знает, как меня зовут».
Допустим, вы встретили свою тетушку Лизу. В вашей новой коре хранится самая разная информация о тетушке Лизе. Данные распределены по коре, и при воспроизведении их требуется собирать в новых комбинациях. Когда вы встречаетесь, вы вспоминаете, что у нее есть пес породы басенджи, она живет в Милуоки и замужем за дядей Джимом. Префронтальная кора помогает вспомнить все милые подробности, ведь внезапно, при общении с самой тетей Лизой, они становятся очень важными.
Напротив, вся новая информация, которую вы получаете от тети Лизы, включая текущую встречу, отправляется из вашего сознания (за которое отвечают многие участки мозга) в гиппокамп. И если вам удастся хорошо поспать, немного отдохнуть или даже вздремнуть, гиппокамп запишет новые воспоминания в новую кору, хранилище долгосрочной памяти. Это называется консолидацией воспоминаний. Процесс особенно важен, когда человек обучается новым знаниям и навыкам. Так что после интенсивных занятий лучше всего вздремнуть или хотя бы отдохнуть.
Итак, префронтальная кора, гиппокамп и отделы новой коры должны общаться друг с другом. Нейроны и отдельные области мозга отправляют и получают информацию путем синхронизации своей электрической колебательной активности. Мы еще не понимаем до конца, как это работает, но когда информацию нужно доставить из одного узла в другой, она кодируется в разные частоты, которые затем распространяются как океанические волны.
Волны высокой частоты действуют лишь на коротких дистанциях, а низкие частоты могут путешествовать гораздо дальше. Поэтому информация, закодированная в высоких частотах, «ездит» на волнах низких частот, которые шлют ее в отдаленные участки мозга. Поразительный пример восприятия сверхнизких частот: в Таиланде в 2004 году слоны и другие животные почуяли приближающееся цунами. За несколько часов до того, как люди услышали сверхнизкие вибрации огромной волны, слоны направились в горы и спаслись от разрушительной стихии. А все потому, что порог различения звуковых частот у слонов гораздо ниже, чем у человека. Эти низкочастотные звуковые волны распространяются на сотни километров.
Человеческие нейроны обычно колеблются с частотой от 0,5 до 100 Гц. Однако основные операции протекают на частоте от 1 до 40 Гц. Преобладающая частота называется «альфа», она равна примерно 10 Гц. В сетях мозга колебания узла, получающего информацию, должны быть хотя бы в частичной синхронии с узлом, который ее посылает.
Например, когда префронтальной коре нужно извлечь какие-то ассоциации из семантической памяти, она тут же синхронизирует свои колебания с височной долей, в которой хранятся значения слов. Как достигается эта синхронизация, пока остается загадкой.
Точные временные ритмы и пространственная протяженность этой синхронизации формируют так называемый «нейронный код». Это тайный язык мозга. Священный Грааль нейрофизиологии — расшифровать нейронный код, который использует электрические и химические сигналы в сложных комбинациях, позволяющих нам говорить, читать, думать, помнить, ходить, становиться писателями, делать детей и, разумеется, бездельничать.
Когда отдельные зоны мозга сотрудничают, допустим, при визите тети Лизы, они временно формируют «функциональные сети». Эти сети создаются исключительно под конкретные задачи, например, чтобы сохранить новые байки от любимой тетушки. Сети могут быть кратковременными и жить всего несколько сотен миллисекунд. Нерешенный вопрос нейрофизиологии — могут ли временные функциональные сети менять входящие в них структурные сети. Иными словами, если в Бозмен, штат Монтана станет прилетать слишком много самолетов, расширит ли город свой аэропорт, что может привести к дальнейшему увеличению воздушных перевозок?
Есть подтверждения высокой пластичности мозга музыкантов, которые, по сравнению с людьми, далекими от музыки, обладают гораздо более объемными нейронными структурами, отвечающими в моторной коре за пальцы рук. Но такие изменения происходят лишь спустя долгие годы тренировок. То же верно и для билингвов: в височных долях мозга у них есть дополнительные нервные структуры для языков. Лондонские таксисты могут похвастаться крупным гиппокампом, особенно теми областями, которые помогают ориентироваться и запоминать обстановку. Словно мозг решает расширить «аэропорты» в нужных зонах, чтобы соответствовать возросшим потребностям в «перевозках». Неизвестно, как быстро могут происходить такие структурные изменения в мозге. Но мы знаем, что мозг сохраняет пластичность на протяжении всей жизни. Так что поистине никогда не поздно научиться играть на музыкальном инструменте, выучить новый язык или кардинально поменять жизнь: ваш мозг изменится тоже.