Ознакомительная версия. Доступно 20 страниц из 98
Самый мелкий масштаб нашего непосредственного восприятия – это то, чем ограничено осязание и зрение, примерно 0,1 миллиметра, тонкий волос или крупная песчинка. В нашем распоряжении есть и множество куда более чувствительных специализированных сенсоров, работающих вплоть до молекулярного уровня. Самые большие значения на той же шкале – размеры человеческого тела, метр или два[36]. Менее заметная, но столь же фундаментальная характеристика нашего восприятия – примерно шесть сантиметров, в среднем разделяющие человеческие зрачки. За этими разнесенными объективами наши сетчатки создают стереопары, которые направляются в левое и правое полушария мозга. По некоторым оценкам, мы задействуем до половины вычислительных ресурсов бодрствующего мозга, совмещая в зрительной коре левые и правые изображения, чтобы создавать свою трехмерную реальность.
Вследствие этого чуть ли не самыми важными для людей данными, получаемыми в ходе космических исследований, становятся пары фотографий, сделанные в одинаковых условиях освещенности (обычно примерно в одно и то же время), которые разнесены на угловое расстояние около 7°, чтобы имитировать стереоизображение предмета у нас в руке, если надеть очки с красным и синим стеклами[37]. Используя наши биологические возможности по обработке данных, мы можем рассматривать гору Олимп на Марсе, как будто она находится прямо перед нами. С помощью компьютерной мыши мы можем поворачивать невероятно странное по форме ядро кометы, известной как 67P/комета Чурюмова – Герасименко, и накладывать на него любую другую информацию, например данные спектроскопии или сведения о температуре, создавая тем самым многоцветный виртуальный объект, который можно рассмотреть с разных точек зрения или даже прогуляться в его внутреннем пространстве[38], расширив тем самым границы того, что мы ощущаем как реальность.
Узнавать более труднодоступные неощутимые факты можно в базовых лабораториях по всему миру, где самые точные инструменты используются для того, чтобы фиксировать отдельные атомы во фрагментах земных пород, метеоритов и лунных образцов. Занимающие целые комнаты масс-спектрометры могут определить точное содержание химических элементов в частичке, которая в миллион раз меньше песчинки. («В одном мгновенье видеть вечность, огромный мир – в зерне песка…»[39][40]) Из такой информации исследователи могут понять условия (состав, температуру, давление, момент времени, присутствие кислорода и водорода), в которых вырос конкретный кристалл, и его атомную структуру. На основе этого мы можем выстраивать целые истории и опровергать или уточнять другие истории – например, о том, как формировались планетезимали и планеты. Такие аналитические лаборатории так же дорого строить и содержать, как и астрономические обсерватории; отличие лишь в том, что, вместо того чтобы смотреть вовне, их сотрудники вглядываются внутрь фрагмента породы, совершая открытия в нанодиапазоне, ненамного превышающем размеры самих атомов.
Комета 67P/Чурюмова – Герасименко, около 4 км длиной от одного конца до другого, – первая комета, на орбиту вокруг которой вышел космический аппарат. Эта фотография сделана с расстояния 28 км от центра ядра, размер кадра составляет 4,6 × 4,3 км.
ESA/Rosetta/NAVCAM (CC BY-SA IGO 3.0)
Это кажется волшебством, но вся эта абракадабра тесно связана с математикой, поскольку доводит дедукцию до ее теоретически возможного предела. В науке вы следуете за математикой туда, куда она вас ведет. И очень часто – почти всегда – вы обнаруживаете, что хвост виляет собакой, иначе говоря, что именно данные о самых мелких или самых отдаленных объектах, которые только можно представить, опрокидывают устоявшиеся теории и порождают новые. Совсем как в детективных рассказах, где случайно найденная мелкая улика меняет все. Для того чтобы делать такие скрупулезные замеры, требуется невероятная техническая точность – например, умение использовать в качестве зонда пучок ионов толщиной в нанометры или улавливать свет из самых далеких уголков Вселенной[41].
Ознакомительная версия. Доступно 20 страниц из 98