К третьему типу относятся проблемы оценки одномерного распределения. Недавно я слушал лекцию[281] Питера Скомороха из компании LinkedIn[282]. Он показал распределение вероятности названия должности сотрудника, занимающегося разработкой программного обеспечения, в зависимости от числа месяцев, прошедших после его выпуска из университета. Согласно данным, распределения «Sr Software engineer» и «senior software engineer» (старший инженер-разработчик программного обеспечения) почти идентичны, что можно было ожидать, учитывая их синонимичность. Аналогичная картина и с распределениями «CTO» и «Chief Technology Officer». Это интересный способ определения синонимов и исключения повторов, вместо того чтобы поддерживать длинный основной список акронимов и аббревиатур. Это возможно только благодаря объему данных: при нем распределение, которое делают авторы, — надежное и предположительно близкое к истинному лежащему в основе распределению населения.
Проблемы многофакторности
Четвертый тип проблем — проблемы многофакторности, или корреляционные, при которых мы стремимся оценить взаимоотношения между переменными. Это может быть оценка взаимоотношений y = f(x) или, возможно, оценка совместной плотности распределения многих переменных. Это можно использовать для разрешения лексической многозначности (например, когда в документе встречается слово pike, обозначает ли оно «щуку» или «пику») или для составления «справочника» взаимосвязанных характеристик или концепций для конкретной лексической единицы (например, с понятием «компания» связаны такие понятия, как «генеральный директор», «главный офис», «ИНН» и так далее).
В данном случае нас интересуют корреляции между словами или фразами. Проблема в том, что документы в сети отличаются высокой размерностью, и, принимаясь за решение подобных проблем, мы попадаем под действие «проклятия размерности»[283], когда данные становятся очень рассеянными.
Таким образом, один из эффектов более крупной выборки заключается в повышении плотности данных в статистическом пространстве. Опять-таки, в случае с более крупными выборками есть возможность более точно оценить показатели, такие как показатели положения (среднее значение, медиана и другие показатели центра распределения). Кроме того, можно более точно оценить совместные плотности распределения (PDFs). Следующая диаграмма рассеяния представляет собой простой пример, составленный на основе этого кода:
par(mfrow=c(1,2))
plot(mvrnorm(100, mu = c(0, 0),
Sigma = matrix(c(1, 9, 9, 1), 2)), xlab="X",ylab="Y",
ylim=c(-4,4))
title("n = 100")
plot(mvrnorm(10000, mu = c(0, 0),
Sigma = matrix(c(1, 9, 9, 1), 2)), xlab="X",ylab="Y",
ylim=c(-4,4))
title("n = 10000")
Слева использовалась маленькая выборка. Диаграмму легко интерпретировать как линейную. Справа, где размер выборки был больше, более очевидно настоящее двумерное нормальное распределение. Конечно, это банальный пример. Суть в том, что для более высоких размерностей требуется значительно более серьезный размер выборки, чтобы также оценить совместные плотности распределения.