Ознакомительная версия. Доступно 16 страниц из 77
5. Steffen LM, Vessby B, Jacobs DR, Jr., et al. Serum phospholipid and cholesteryl ester fatty acids and estimated desaturase activities are related to overweight and cardiovascular risk factors in adolescents. Int J Obes (Lond). 2008 Aug; 32 (8): 1297–1304.
6. Warensjo E, Rosell M, Hellenius ML, et al. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis. 2009 Aug 27; 8: 37.
7. Pan DA, Lillioja S, Milner MR, et al. Skeletal muscle membrane lipid composition is related to adiposity and insulin action. J Clin Invest. 1995 Dec; 96 (6): 2802–2808.
8. Brenner RR. Hormonal modulation of delta6 and delta5 desaturases: case of diabetes. Prostaglandins Leukot Essent Fatty Acids. 2003 Feb; 68 (2): 151–162.
9. Emken EA, Adlof RO, Gulley RM. Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta. 1994 Aug 4; 1213 (3): 277–288.
10. Там же.
11. Bezard J, Blond JP, Bernard A, et al. The metabolism and availability of essential fatty acids in animal and human tissues. Reprod Nutr Dev.1994; 34 (6): 539–568.
12. St-Onge MP, Bosarge A, Goree LL, et al. Medium chain triglyceride oil consumption as part of a weight loss diet does not lead to an adverse metabolic profile when compared to olive oil. J Am Coll Nutr. 2008 Oct; 27 (5): 547–552.
13. Van Wymelbeke V, Himaya A, Louis-Sylvestre J, et al. Influence of mediumchain and long-chain triacylglycerols on the control of food intake in men. Am J Clin Nutr. 1998 Aug; 68 (2): 226–234.
14. Mumme K, Stonehouse W. Effects of medium-chain triglycerides on weight loss and body composition: a meta-analysis of randomized controlled trials. J Acad Nutr Diet. 2015 Feb; 115 (2): 249–263.
15. Binnert C, Pachiaudi C, Beylot M, et al. Influence of human obesity on the metabolic fate of dietary long- and medium-chain triacylglycerols. Am J Clin Nutr. 1998 Apr; 67 (4): 595–601.
16. Assuncao ML, Ferreira HS, dos Santos AF, et al. Effects of dietary coconut oil on the biochemical and anthropometric profiles of women presenting abdominal obesit y. Lipids. 2009 Jul; 44 (7): 593–601.
17. Liau KM, Lee YY, Chen CK, et al. An open-label pilot study to assess the efficacy and safety of virgin coconut oil in reducing visceral adiposity. ISRN Pharmacol. 2011; 2011: 949686.
18. DeLany JP, Windhauser MM, Champagne CM, et al. Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr. 2000 Oct; 72 (4): 905–911.
19. Lasekan JB, Rivera J, Hirvonen MD, et al. Energy expenditure in rats maintained with intravenous or intragastric infusion of total parenteral nutrition solutions containing medium- or long-chain triglyceride emulsions. J Nutr. 1992 Jul; 122 (7): 1483–1492.
20. DeLany JP, Windhauser MM, Champagne CM, et al. Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr. 2000 Oct; 72 (4): 905–911.
21. Там же.
22. Leyton J, Drury PJ, Crawford MA. Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr. 1987 May; 57 (3): 383–393.
23. Lasekan JB, Rivera J, Hirvonen MD, et al. Energy expenditure in rats maintained with intravenous or intragastric infusion of total parenteral nutrition solutions containing medium- or long-chain triglyceride emulsions. J Nutr.1992 Jul; 122 (7): 1483–1492.
24. McCarty MF, DiNicolantonio JJ. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pat hogenicit y. Open Heart. 2016 Jul 27; 3 (2): 105.
25. von Schacky C. Cardiovascular disease prevention and treatment. Prostaglandins Leukot Essent Fatty Acids. 2009 Aug-Sep; 81(2–3): 193–198.
26. Там же.
27. Bunea R, El Farrah K, Deutsch L. Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. Altern Med Rev. 2004 Dec; 9 (4): 420–428.
28. Schuchardt JP, Schneider I, Meyer H, et al. Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations- a comparative bioavailability study of fish oil vs. krill oil. Lipids Health Dis. 2011 Aug 22; 10: 145.
29. Neubronner J, Schuchardt JP, Kressel G, et al. Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. Eur J Clin Nutr.2011 Deb; 65 (2): 247–254.
30. Dyerberg J, Madsen P, Moller JM, et al. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot Essent Fatty Acids. 2010 Sep; 83 (3): 137–1341.
31. Krill [Интернет]. Nat Geog. Доступно по ссылке http://www.nationalgeographic.com/animals/invertebrates/group/krill.
32. Ulven SM, Kirkhus B, Lamglait A, et al. Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers. Lipids. 2011 Jan; 46 (1): 37–46.
33. Nguyen LN, Ma D, Shui G, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014 May 22; 509 (7501): 503–506.
34. Alakbarzade V, Hameed A, Quek DQ, et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat Genet. 2015 Jul; 47 (7): 814–817.
35. Guemez-Gamboa A, Nguyen LN, Yang H, et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet. 2015 Jul; 47 (7): 809–813.
36. Nishida Y, Yamashita E, Miki W, et al. Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system. Carotenoid Science. 2007 Jan; 11 (6): 16–20.
37. Corbin KD, Zeisel SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol. 2012 Mar; 28 (2): 159–165.
38. Nguyen LN, Ma D, Shui G, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014 May 22; 509 (7501): 503–506.
39. Alakbarzade V, Hameed A, Quek DQ, et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat Genet. 2015 Jul; 47 (7): 814–817.
40. Guemez-Gamboa A, Nguyen LN, Yang H, et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet. 2015 Jul; 47 (7): 809–813.
Ознакомительная версия. Доступно 16 страниц из 77