Ознакомительная версия. Доступно 17 страниц из 81
них надлежащие данные. Другими словами, если мы научились хорошо моделировать прошлое на основании теоретических данных, мы получаем возможность «узнать» прошлое популяции на основании имеющихся сегодня реальных генетических данных. Это основной принцип исследования в популяционной генетике.
Но что это за эволюционные процессы, влияющие на генетическое разнообразие популяции? Десятилетия теоретических поисков в области популяционной генетики в XX веке показали, что эволюционные механизмы можно разделить на три большие категории: геномные факторы – мутация или рекомбинация[21], демографические факторы – дрейф генов или миграции, и факторы естественного отбора в различных его формах.
Геномные факторы
Мутация – это единственный процесс, который «создает» разнообразие, производя молекулярные изменения в ДНК и тем самым генерируя новые аллели[22]. Можно сказать, что мутация – это «материал для эволюции», на который могут воздействовать эволюционные механизмы. Когда клетка делится, она должна воспроизвести ДНК так, чтобы две дочерние клетки унаследовали ту же генетическую информацию, какую содержит материнская клетка. Двойная спираль ДНК обеспечивает простой механизм репликации: две ее цепочки раскручиваются, и каждая из них служит матрицей для синтеза новой цепочки с комплементарной последовательностью нуклеотидов. Этот процесс позволяет воспроизвести две идентичные спирали двухцепочечной ДНК. Однако в ходе репликации ДНК возможны «ошибки», когда исходное основание заменяется на другое, неподходящее. Несмотря на то что бо́льшая часть этих ошибок затем корректируется механизмами контроля и репарации[23], случается, что ошибки ускользают от контроля и становятся мутациями.
Различают два больших класса мутаций в зависимости от типа затронутых ими клеток. С одной стороны, существуют соматические мутации: они не затрагивают половые клетки, отвечающие за размножение, и, следовательно, не передаются потомству. Эти мутации могут появляться на протяжении всей жизни индивида в ДНК самых разных клеток. В некоторых случаях эти клетки в результате мутаций могут превратиться в опухоль. С другой стороны, когда мутации воздействуют на ДНК гамет, или половых клеток (сперматозоидов и яйцеклеток), то говорят о герминальных мутациях. В этом случае эмбрион станет носителем мутации, хотя ни один из родителей не имел ее в своем генотипе. Причиной около 80 % мутаций у потомков служит хромосомный материал, переданный отцом (сперматозоид), и количество мутированных сперматозоидов напрямую связано с возрастом отца. Тем не менее нередки и аномалии, переданные матерью, и они также имеют тенденцию увеличиваться с возрастом, хотя и в меньшей степени. На сегодняшний день мы знаем, что почти каждый из нас имеет при рождении 70 новых мутаций по сравнению со своими родителями; 55 из них приобретены от отца и 15 от матери.
Другой источник генетического разнообразия – рекомбинация. Этот процесс не создает новых вариантов генов, но производит новые их комбинации, а значит, новые геномы. У эукариотических организмов[24] рекомбинация происходит во время полового размножения благодаря мейозу – процессу, в результате которого формируются гаметы. Образование новых генетических комбинаций обеспечивает перемешивание генов и поддерживает генетическое разнообразие в популяции, что повышает возможности вида адаптироваться к изменениям окружающей среды. То есть мутация и рекомбинация – это эволюционные процессы, которые увеличивают генетическое разнообразие в пределах одной популяции и в то же время приводят к росту различий между популяциями.
Демографические факторы
Другим фактором, воздействующим на генетическое разнообразие популяций, являются демографические процессы. Для начала вспомним о дрейфе генов в определении Сьюэла Райта: изменение частоты аллелей в пределах одной популяции, которое не зависит от мутаций, естественного отбора и миграций. Причиной дрейфа генов являются совершенно случайные и непредсказуемые события, например, встречи сперматозоидов и яйцеклеток при половом размножении. Масштаб дрейфа генов связан с «эффективным размером» популяции, который представляет собой число индивидов данной популяции, обеспечивающее передачу генетического разнообразия следующему поколению. В больших популяциях частота мутаций останется относительно стабильной от поколения к поколению, так как влияние дрейфа генов в них, как правило, несущественно. Но вот в маленьких популяциях воздействие дрейфа генов будет очень заметным, со значительными флуктуациями частот аллелей с течением времени; дрейф генов может даже привести к исчезновению благоприятного аллеля или, наоборот, закреплению неблагоприятного аллеля в популяции.
Отдельные демографические события связаны с уменьшением размера популяции и наиболее значительными эффектами дрейфа генов. Прежде всего речь идет о географической или культурной изоляции популяции, об эффекте бутылочного горлышка – резком сокращении размера популяции вследствие изменения окружающей среды, войны или эпидемии – или об эффекте основателя, то есть основании новой популяции очень малым числом индивидов, принадлежавших ранее большой популяции. В этих условиях дрейф генов снижает генетическое разнообразие в пределах популяции, вместе с тем усиливая межпопуляционные различия.
Миграция (перенос, или поток генов) – это еще один демографический механизм, обеспечивающий обмен генами между популяциями. Прибытие мигрантов может изменить состав генетического разнообразия принимающей популяции, изменяя частоту встречаемости мутаций. Таким образом, миграция и скрещивание (или метисация) снижает генетическое различие между популяциями, которое могло бы привести к появлению нового вида. В случае популяции с малым (вследствие эффекта бутылочного горлышка или эффекта основателя) генетическим разнообразием прибытие мигрантов и последующая гибридизация с ними позволяют повысить уровень генетического разнообразия гораздо быстрее, чем мутации. Таким образом, миграции и мутации являются силами, противодействующими дрейфу генов: дрейф генов уменьшает разнообразие, а миграции и мутации повышают – это явление называется мутационно-дрейфовым равновесием. Миграция увеличивает генетическое разнообразие в пределах конкретной популяции, одновременно уменьшая генетические различия между популяциями.
Факторы отбора
И наконец мы добрались до факторов, изменяющих генетическое разнообразие популяции в рамках естественного отбора. Естественный отбор составляет основу биологической адаптации человека к окружающей среде. Он работает, когда существуют различия селективной ценности (fitness) среди индивидов. Поскольку фенотипические характеристики индивида во многом определяются генетическими изменениями, увеличивающими его шансы на выживание и размножение, они передаются новому поколению. Влияние естественного отбора на генетическую изменчивость неоднозначно, потому что оно зависит от конкретного типа отбора. Он может увеличивать, уменьшать или сохранять неизменным генетическое разнообразие.
В случае положительного отбора встречаемость благоприятной мутации в популяции будет быстро расти, адаптированность – увеличиваться; иначе говоря, будет увеличиваться селективная ценность мутации. Все больше распространяясь и, следовательно, вытесняя другие, эта благоприятная мутация приведет к уменьшению генетического разнообразия в пределах популяции и увеличению различия между популяциями – при условии, что воздействие окружающей среды, вызвавшее это событие, будет отличаться от такового для других популяций. Но это еще не все, потому что существуют другие формы естественного отбора – как, например, поддерживающий высокое генетическое разнообразие стабилизирующий отбор, – и эти формы могут увеличивать разнообразие в пределах одной популяции и уменьшать различия между популяциями. В отдельной главе мы рассмотрим различные формы естественного отбора и то, каким образом они влияют на
Ознакомительная версия. Доступно 17 страниц из 81