Топ за месяц!🔥
Книжки » Книги » Домашняя » Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац 📕 - Книга онлайн бесплатно

Книга Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац

406
0
На нашем литературном портале можно бесплатно читать книгу Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 ... 100
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 20 страниц из 100

Но всегда – даже когда геометрия была зациклена на прямых линиях – выделялась одна кривая, самая совершенная из всех: окружность. Мы видим ее в годичных кольцах деревьев, в волнах на пруду, в форме солнца и луны. В природе круги повсюду. Когда мы смотрим на них, они смотрят на нас – в буквальном смысле, ведь они в глазах наших близких, в зрачках и радужках. Круги и практичны, и эмоциональны, как колеса и обручальные кольца; в них есть нечто мистическое. Вечное возвращение предполагает цикл времен года, возрождения, вечной жизни и нескончаемой любви. Неудивительно, что круги привлекали внимание с тех пор, как люди стали изучать формы.

С математической точки зрения окружности воплощают изменения без изменений. Точка, двигающаяся по окружности, меняет направление движения, не меняя при этом своего расстояния от центра. Это минимальная форма изменений – самый простой способ двигаться по кривой. И, конечно же, окружность симметрична. Если вы повернете ее вокруг центра, она будет выглядеть точно так же. Такая поворотная симметрия может быть причиной распространенности этих фигур. Везде, где природу не беспокоит направление, обязательно появляются окружности. Посмотрите, что происходит, когда дождевая капля попадает в лужу: от точки удара расходятся мелкие волны. Они обязаны иметь круговую форму, потому что двигаются с одинаковой скоростью во всех направлениях и начинаются в одной точке. Этого требует симметрия.

Окружности могут также порождать другие искривленные формы. Если представить, что окружность проткнули по диаметру и стали вращать вокруг этой оси в трехмерном пространстве, то получится сфера – форма мяча или планеты. Если окружность двигать по прямой перпендикулярно ее плоскости, появляется цилиндр – форма банки или коробки для шляп. Если окружность одновременно с поступательным движением сжимается, образуется конус, если расширяется – то усеченный конус (форма абажура).



Окружности, сферы, цилиндры и конусы очаровывали первых геометров, но при этом они считали, что работать с ними гораздо труднее, чем с треугольниками, прямоугольниками, квадратами, кубами и прочими прямолинейными формами, составленными из кусков прямых линий и плоскостей. Ученых интересовали площади криволинейных поверхностей и объемы криволинейных тел, но они понятия не имели, как решать такие задачи. Криволинейность была сильнее.

Бесконечность как строитель моста

Анализ начинался как отрасль геометрии[28]. Примерно в 250 году до нашей эры в Древней Греции вплотную занялись разгадкой кривых. Амбициозный план состоял в использовании бесконечности для построения моста между кривыми и прямыми. Приверженцы плана надеялись, что как только такая связь будет установлена, методы и техники прямолинейной геометрии можно будет перетащить через этот мост и применить для решения загадки кривых. Бесконечность поможет решить все старые задачи. По крайней мере, таков был настрой.

Должно быть, в то время такой план выглядел довольно надуманным. У бесконечности была сомнительная репутация – будто бы это нечто пугающее, а не полезное. Что еще хуже, само понятие бесконечности было весьма туманно и сбивало с толку. Что это вообще такое? Число? Место? Идея?

Тем не менее, как мы вскоре увидим, бесконечность оказалась манной небесной. Если учесть все открытия и технологии, которые в итоге выросли из анализа, то идея использовать бесконечность для решения трудных геометрических задач была одной из лучших в истории.

Конечно, в 250 году до нашей эры предвидеть это было невозможно. Тем не менее бесконечность тут же дала несколько впечатляющих результатов. Одним из первых и лучших стало решение давней загадки: как найти площадь круга[29].


Доказательство с помощью пиццы

Перед тем как вдаваться в подробности, давайте набросаем ход рассуждений. Наша стратегия – представить круг в виде пиццы, а затем нарезать ее на бесконечное множество кусочков и волшебным образом переложить их так, чтобы получился прямоугольник. Это даст нам ответ, который мы ищем, поскольку перекладывание кусочков, очевидно, не меняет их площадь, а находить площадь прямоугольника мы умеем: нужно умножить его длину на ширину. Результатом будет формула для площади круга.

Для такого рассуждения пицца должна быть идеализированной математической пиццей – идеально плоской и круглой, с бесконечно тонкой корочкой. Обозначим буквой С ее периметр (или длину окружности) – расстояние вдоль границы. Длина окружности – вовсе не то, что обычно интересует любителей пиццы, однако при желании мы могли бы измерить величину C с помощью рулетки.



Еще одна необходимая величина – радиус пиццы r, который определяется как расстояние от ее центра до любой точки корочки. В частности, если мы нарежем пиццу на ломтики, проводя разрезы от центра к краям, то длина прямого отрезка в таких ломтиках будет равна r.



Предположим, что мы разделили пиццу на четыре части. Их можно переложить следующим способом, но он не выглядит слишком многообещающим.



Получившаяся фигура с выступами вверху и внизу смотрится несколько странно. Это явно не прямоугольник, и определить ее площадь непросто. Похоже, нам придется отступить. Но, как и в любой драме, герою перед триумфом предстоит преодолеть трудности. Драматическое напряжение нарастает.

Однако раз уж мы тут застряли, то отметим две вещи, потому что они будут справедливы в ходе всего доказательства и в итоге дадут нам размеры искомого прямоугольника. Первая – одна половина корочки стала искривленной верхней границей новой фигуры, а вторая – нижней частью. Поэтому длина верхней границы равна C/2 и нижней границы – тоже C/2, как изображено на рисунке. Как мы увидим, в итоге эти границы превратятся в длинные стороны прямоугольника. Вторая – длина всех наклонных боковых сторон получившейся фигуры равна r, потому что это просто стороны исходных ломтиков пиццы. Эти боковые отрезки в итоге превратятся в короткие стороны прямоугольника.

Ознакомительная версия. Доступно 20 страниц из 100

1 ... 6 7 8 ... 100
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац», после закрытия браузера.

Комментарии и отзывы (0) к книге "Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац"