Топ за месяц!🔥
Книжки » Книги » Домашняя » Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете - Илья Леенсон 📕 - Книга онлайн бесплатно

Книга Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете - Илья Леенсон

22
0
На нашем литературном портале можно бесплатно читать книгу Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете - Илья Леенсон полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 63 64 65 ... 86
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 18 страниц из 86

Пётр (или его советники) ошибся по крайней мере дважды. Упомянутые в указе «все те народы» считают свои года не «осм» (т. е. восемь), а семь дней спустя от Рождества (т. е. встречают Новый год в ночь с 31 декабря на 1 января, а Рождество – в ночь с 24 на 25 декабря). Вторая ошибка связана с тем, что «новый столетный век» наступает не с 1 января 1700 года, а с 1 января 1701 года.

Миллиард минут и еще четверть часа

Примем для простоты, что в году 365 суток = 8760 часов = 525 600 минут, тогда 1 000 000 000 / 525 600 = 1902,587 519 года, и приблизительный ответ – указанное событие случилось летом 1902 года.

Проведем более точный расчет, используя 10-разрядный калькулятор. В году 365,242196 суток = 8765,812704 часа = 525948,7622 минуты. Тогда ответ 1 000 000 000 / 525 948,7622 = 1901,325 893 года. Вычтем 1901 и получим 0,325893072 года, или 0,325893072 · 365,242 196 = 119,0299013 суток. Вычтем 119 и получим 0,0299012786 суток = 0,7176306816 часа = 43,0578409 минуты.

В 1901 году (невисокосном) январь, февраль и март дают в сумме 90 суток; оставшиеся 29 с лишним суток приходятся на апрель. Таким образом, по этой логике событие произошло в ночь с 29 на 30 апреля 1901 года, когда после полуночи прошло 43 минуты.

Попробуем посчитать иначе, исходя из первоначального значения 109/365 = 1902,587519 года. Введем в него ряд поправок. В этом значении не учтены високосные годы, в которых 366 дней. Если бы новый стиль был введен в самом начале новой эры, то всего високосных лет за 1902 года должно было быть 475, что дает «лишних» 475 суток. Но это не все. Високосными (при принятом условии) из 19 годов, оканчивающихся на 00, были бы только 400, 800, 1200 и 1600-й годы, а остальные 15 «круглых» лет были бы невисокосными. Значит, «лишних» суток в наших расчетах будет не 475, а на 15 меньше, т. е. 460.

Итак, мы не учли 460 високосных года, в которых было «лишних» 460 суток. Значит, мы при расчетах забежали вперед на 460 суток, или 460 / 365,242196 = 1,259438271 года, и наше событие случилось через 1902,587519 – 1,259438271 = 1901,328081 года; 0,328081 года = 119,8290 суток; 0,8290 суток = 19,9 часа. Таким образом, миллиард минут истекли в тот же день, 29 апреля 1902 года, но не ночью, а в восемь вечера.

Однако при обоих расчетах не было учтено, что 24 февраля 1581 года, когда был введен григорианский календарь, все даты были сдвинуты на 10 дней вперед. Значит, к полученному результату надо прибавить эти 10 суток.

Выше седьмого неба

Ответ легко получить с помощью чертежа и простых расчетов. Прямая от глаз человека до самой отдаленной видимой точки на поверхности (считаем Землю идеальным шаром) образует прямой угол с радиусом Земли, проведенным в ту же точку. Принимая приближенно радиус Земли равным 6400 км, получаем, что в прямоугольном треугольнике гипотенуза равна 6400 + 0,5 км, один из катетов равен 6400 км, а другой нам надо найти. Получаем уравнение

x2 + 64002 = (6400 + 0,5)2 = 64002 + 2 · 6400 · 0,5 + 0,25,

или x2 = 6400 (малой величиной 0,25 можно пренебречь), откуда х = 80 км.

Поднимая антенну на несколько метров, можно увеличить это расстояние.

Глобусы большие и маленькие

1. Протяженность Москвы (с запада на восток) меньше диаметра Земли в 12 000/30 = 400 раз. Поэтому глобус должен быть размером 400 · 3 = 1200 мм = 1,2 м.

2. Решение аналогично предыдущему. Высота Джомолунгмы (около 9 км) меньше диаметра Земли в 12 000/9 ≈ 1300 раз, следовательно, диаметр глобуса равен 1300 мм = 1,3 м.

Поставить на карту

Уменьшение размеров в 10 млн (107) раз означает уменьшение площади в 1014 (100 трлн) раз. Поэтому на карте 15 человек могут и не поместиться. Проверим это. Протяженность России с запада на восток – порядка 10 000 км (точность здесь не нужна), поэтому карта будет длиной примерно 1/1000 км, или 1 м. Понятно, что 15 человек на такой карте не поместятся.

Перлы:))

У меня есть такая карта, но я с трудом на ней умещаюсь.

Конечно, на карте 15 человек не уместится; вот если бы вы и людей уменьшили в 10 млн раз – тогда другое дело.

15 человек уместились бы на такой карте, если бы 150 млн человек жили в одноэтажных домах. Но они живут в многоэтажных домах, поэтому на карте они не уместятся.

О чувстве локтя

1. Необходимо оценить размеры Красной площади, число жителей Москвы и площадь, занимаемую одним человеком. Красная площадь (во всяком случае, ее свободная часть) имеет в длину примерно 400 м, в ширину – около 100 м, площадь – 40 000 м2. Далее. Представьте себе, что вы едете в переполненном лифте – тогда хорошо видно, что на 1 м2 можно разместить примерно пять человек. Таким образом, на Красной площади уместится около 200 000 человек. В Москве же проживает более 12 млн человек. Очевидно, что на Красной площади они никак не поместятся, даже если их очень сильно уплотнить!

2. Площадь водохранилища – 4200 км2. Считаем, как и в предыдущей задаче, что на 1 м2 можно разместить примерно пять человек, тогда на 1 км2 поместятся примерно 5 млн человек, а на льду водохранилища – 22 млрд человек. В Москве проживает более 12 млн человек, в России – примерно 150 млн, на всей планете – около 8 млрд, и все они свободно уместятся на льду Рыбинского водохранилища.

Прогулка вокруг Плещеева озера

1 га = 10 000 м2 = 0,01 км2, площадь озера – 50 км2, отсюда диаметр круга – около 8 км, длина окружности – 24 км. Такое расстояние можно пройти примерно за шесть часов.

Сотая часть гектара (в просторечии «сотка») называется аром; название «гектар» произошло от греческого ἑκατόν – «сто»: 1 га = 100 ар. Тот же корень в устаревшей единице измерения электроэнергии – гектоватт-час, в словах «гектограф» (прибор для размножения текста, позволяющий получать до 100 отпечатков); «гекатомба» (в Древней Греции – жертвоприношение из 100 быков); «гекатонхейры» (мифические сторукие великаны). Когда в 1868 году открыли сотый по счету астероид, его назвали «Геката» – в честь древнегреческой богини ночи, однако с намеком на порядковое числительное.

«Горячо – холодно»

Основных причин две. Первая – перемещение воздушных масс зимой из Атлантики на восток. Эти массы обогревают полярные районы и западную часть Евразии. Однако до Якутии атлантическое тепло не доходит. А воздушные массы с Тихого океана способны согреть лишь восточное побережье материка.

Вторая причина – наличие между реками Лена и Индигирка котловин, окруженных горными хребтами. Длинными зимними безветренными ночами в этих котловинах поверхность земли отдает очень много тепла, а за короткий зимний день с низко стоящим солнцем тепловые потери не могут восполниться. В результате воздух в котловинах становится очень холодным.

Ознакомительная версия. Доступно 18 страниц из 86

1 ... 63 64 65 ... 86
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете - Илья Леенсон», после закрытия браузера.

Комментарии и отзывы (0) к книге "Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете - Илья Леенсон"