Ознакомительная версия. Доступно 20 страниц из 98
ГАРМОНИЯ ВСЕЛЕННОЙ
Главным доказательством своей концепции Вселенной чисел пифагорейцы считали музыку: они обнаружили ряд поразительных связей между гармонией звуков и простыми дробями. В результате несложных экспериментов они открыли, что если натянутая струна издает определенный звук, то вместе со струной вдвое меньшей длины она будет издавать гармоничные созвучия, которые сейчас называют октавой. Струна длиной в 2/3 и 1/3 от первой также создают гармоничные звуки.
Сегодня эти числовые аспекты музыки относят к физике колебания струн, которые служат основой для теории волн. Количество волн, помещающихся в заданной длине струны, является целым числом, и эти числа образуют простые соотношения. Если они не укладываются в простую пропорцию, соседние звуки накладываются друг на друга, создавая несогласованные «биения», неприятные для слуха. На самом деле всё намного сложнее и включает особенности восприятия нашего мозга, но в любом случае мы видим физическое обоснование открытия пифагорейцев.
Пифагорейцы говорили о существовании девяти небесных тел: Солнце, Луна, Меркурий, Венера, Земля, Марс, Юпитер и Сатурн плюс центральный огонь, отличный от Солнца. В их космологии числу 10 придавалось столь серьезное сакральное значение, что они включили в эту систему Антихтон (Антиземля, Противоземля) – загадочную планету, скрытую от нас Солнцем.
Это две подобные формы
Как мы уже знаем, целые числа 1, 2, 3 и т. д. естественно приводят нас ко второму виду чисел – дробям. Математики называют их рациональными числами. Это дроби вида a/b, где a и b – целые числа (также b не равно 0, иначе вся дробь не имеет смысла). Дроби могут делить целые числа на сколь угодно малые части, а значит, длину стороны геометрической фигуры можно аппроксимировать настолько близко, насколько мы пожелаем, с помощью рациональных чисел. Кажется вполне естественным, что можно в точности разделить число так, чтобы все длины были рациональными.
Если бы это было возможно, геометрия стала бы намного проще: два любых отрезка можно было бы представить целыми числами, кратными длине небольшого отрезка, и так получить их общую длину, сложив множество копий таких отрезков. Кому-то это может показаться неважным, но мы значительно упростили бы понимание теории длин, площадей и особенно подобия фигур (которые имеют одинаковую форму, но разный размер). С помощью схем, сформированных из бесконечного множества копий одной и той же базовой формы, можно доказать что угодно.
К несчастью, этой мечте не суждено было осуществиться. По легенде, один из пифагорейцев, Гиппас из Метапонта, обнаружил, что это утверждение ошибочно. В частности, он доказал, что диагональ единичного квадрата (квадрата со стороной, равной одной единице), иррациональна, не является дробью. Известно (хоть это и непроверенные данные, но отличная история), что он оплошал, озвучив этот факт, когда пифагорейцы пересекали на лодке Средиземное море. Его «товарищи по цеху» пришли в такое негодование, что вышвырнули его за борт, и он утонул. Но, скорее всего, дело ограничилось его отлучением от братства. Каким бы ни было наказание, оно явно говорит о том, что его открытие не привело пифагорейцев в восторг.
Современное толкование наблюдений Гиппаса состоит в том, что √2 – иррациональное число. На взгляд пифагорейцев, этот факт был ударом в спину их беззаветной вере в то, что корни Вселенной уходят в числа – целые. Дроби – отношения целых чисел – еще кое-как вписывались в это мировоззрение, но для чисел, которые доказуемо не являлись дробями, здесь места не было. Вот и вышло, что утопленный или отлученный бедняга Гиппас стал первой жертвой иррациональности – или, скорее, религиозных убеждений.
Укрощение иррациональности
Но греки всё же нашли способ справиться с иррациональностью – благодаря тому, что любое иррациональное число можно аппроксимировать рациональным. Чем точнее приближение, тем сложнее рациональное число, и всегда остается некоторая погрешность. Делая ее всё меньше, мы получаем возможность изучать свойства иррациональных чисел, исследуя аналогичные свойства ближайших к ним рациональных. Проблема в том, чтобы поставить эту идею на те рельсы, которые были бы совместимы с подходом греков к геометрии и доказательствам. Это оказалось выполнимой, но сложной задачей.
Греческая теория иррациональных чисел была сформулирована Евдоксом примерно в 370 г. до н. э. Он стремился представить любую величину, рациональную или иррациональную, в виде соотношения двух отрезков – иными словами, парными отрезками. Таким образом, дробь 2/3 можно представить как два отрезка, один длиной в две единицы и другой в три (соотношение 2:3). √2 можно представить парой, составленной диагональю единичного квадрата и его стороной (и это будет соотношение √2:1). Обратите внимание: здесь оба отрезка могут быть построены геометрически.
Здесь главный секрет – определить, когда эти два соотношения будут равны. Когда a: b = c: d? Греки не имели такой системы счисления, которая позволила бы им сделать это простым делением длины одного отрезка на длину другого, и вынуждены были сравнивать a: b с c: d. А Евдокс предложил громоздкий, но точный способ сравнения, укладывающийся в условности греческой геометрии. Идея была в том, чтобы сравнивать целочисленные произведения ma и nc. Этого можно было достичь, соединяя m копий а непрерывной цепью и точно так же n копий b, а затем использовать те же множители m и n для сравнения mb и nd. Евдокс рассуждал: если соотношения a: b и c: d не равны, мы можем подобрать m и n так, чтобы увеличить разницу до такой степени, что ma > nc, но mb < nd. Действительно, так мы можем установить равенство соотношений.
Равны ли соотношения a: b и c: d?
Такое определение требует специальных навыков, зато прекрасно вписывается в ограниченные возможности греческой геометрии. Так или иначе, оно работает; более того, оно позволило греческим геометрам взять теоремы, легко доказуемые с помощью рациональных отношений, чтобы расширить их действие до иррациональных.
Часто они использовали так называемый метод исчерпывания (или, иначе, истощения), в котором некоторые видят предка современного метода пределов и интегрального исчисления. Этим методом они доказали, что площадь круга пропорциональна квадрату его радиуса. Доказательство основывалось на простом факте, открытом Евклидом: площади двух подобных многоугольников соотносятся в той же пропорции, что и квадраты их соответствующих сторон. Круг представлял проблему: он не был многоугольником. Тогда греки построили две последовательности многоугольников: одну помещавшуюся внутри круга, а вторую – снаружи. Каждый следующий многоугольник всё ближе подходит к кругу, и из метода исчерпывания, доведенного до совершенства Евдоксом, следует, что площади самых близких к кругу многоугольников стремятся к его площади и в итоге совпадут с ней.
Ознакомительная версия. Доступно 20 страниц из 98