Сегодня эксперты высказываются с меньшей долей уверенности, поскольку лишь немногие болезни можно объяснить, исходя исключительно из ясно определяемых изменений в геноме. Большинство же болезней развиваются вовсе не оттого, что организм неправильно синтезирует отдельные белки вследствие мутации ДНК.
К сожалению, действительность намного сложнее. Даже если ученые идентифицируют еще больше генов, да к тому же выяснят, в каких процессах все они участвуют, вряд ли удастся обнаружить новые точки воздействия лекарственных средств. У гена чрезвычайно редко есть всего лишь одна четко определенная функция. И еще реже сбой этой функции действительно приводит к развитию однозначно диагностируемой, уже известной болезни. Ожидаемый фармацевтический бум до сих пор не разразился — и, вероятно, в этой форме не разразится уже никогда.
Даже Крэйг Вентер теперь признается: «Испытываешь чувство неловкости, когда вспоминаешь, какими наивными были наши тогдашние гипотезы о принципах функционирования генов». Взаимодействие генов настолько сложно, что его невозможно понять, зная лишь «действующих лиц». Первые высказывания генетиков сразу после их «высадки на Луне» производят сегодня такое впечатление, какое производил бы наивный ребенок, который, стремясь понять, как можно измерить время, стал бы рассматривать бесчисленные крохотные детальки наручных часов — колесики, винтики и пружинки, — аккуратно, но без всякой системы разложенные на столе.
Науке еще предстоит выяснить, какой ген выполняет те или иные функции в тот или иной момент, взаимодействуя с теми или иными генами. Почти все биохимические процессы внутри клетки взаимодействуют друг с другом при помощи сложнейшего механизма генной регуляции.
Между тем и это еще не все. «Распад генома» — такое меткое заглавие дал своей статье в еженедельнике «Ди Цайт» журналист Ульрих Бансен, пишущий о науке. По его словам, геном — вовсе не устойчивый текст. На самом деле изменения в геноме и вокруг него — важная составляющая человеческого существования, а не только причина болезней, как думали раньше. «Каждый организм, каждый человек, даже каждая клетка — самостоятельная генетическая Вселенная», — писал Бансен.
Например, число генов способно сильно увеличиться (их может стать даже в 16 раз больше), чтобы кодируемые ими белки синтезировались чаще. При этом копии иногда модифицируются — могут дробиться, изменять свой код или снова состыковываться где-то на другом отрезке наследственного материала. Модифицированные гены, так называемые транспозоны, или перемещающиеся элементы, — это мобильная часть ДНК. Они прыгают вокруг и играют с ней как с громадным набором детских кубиков. Геном конструирует из работающих генов все новые разновидности, которые однажды, может быть, пригодятся.
Но чтобы они не принесли вреда, до поры до времени клетка заставляет их молчать — кстати, с помощью эпигенетического приема, который я разъясню ниже. По мнению многих современных генетиков, перемещающиеся элементы играют роль запаса на черный день. Если условия жизни сильно ухудшатся и геному нужно будет как-то «ответить», клетка «спустит эти элементы с поводка» и активирует, утверждает специалист по психосоматике Иоахим Бауэр.
Кстати, большая часть наследственного материала состоит вовсе не из генов. Эту самую часть, к которой относятся в том числе и связанные транспозоны, генетики на протяжении десятилетий считали ненужной, лишенной информации. Они презрительно называли ее английским словом junk, то есть мусором. Но мусор оказывается не таким уж бесполезным. Некоторые его элементы практически не изменились за миллионы лет, в период эволюции от червяка к человеку. Это допустимо только в том случае, если они действительно выполняют какую-то важную роль.
Уже есть предположения о том, какая информация хранится в «мусорной ДНК» и какие функции она выполняет. Здесь тоже не обошлось без эпигенетики.
Сколько генов у человека
Каждый год элита молекулярной биологии собирается на симпозиум в городке Колд-Спринг-Харбор на живописном северном побережье Лонг-Айленда, что неподалеку от Нью-Йорка. В мае 2000 года там обсуждалось — иначе и быть не могло! — секвенирование генома человека и его последствия для всей биологии. Что не давало покоя специалистам, так это парадокс показателя С.[3]В нем скрывался вопрос: почему сложность организмов не отражается на размере их генетического материала? Например, генетический код пшеницы длиннее человеческого в пять раз, а амебы — в двести раз. Наследственный материал другого одноклеточного организма — дрожжей, напротив, в двести раз короче человеческого.
До этого момента ученые не затруднялись с ответом: во-первых, говорили они, у живых организмов разное количество мусорной ДНК. Во-вторых, гены внутри наследственного материала могут повторяться несколько раз. И то и другое иногда значительно увеличивает геном организма, не повышая его сложности.
Исходя из этого, молекулярные биологи сформулировали новый тезис: сложность организма зависит прежде всего от числа различных генов, которые, подобно островкам, рассеяны в океане бесполезного генома. Редко целое научное сообщество заблуждалось настолько сильно.
В 2000 году с помощью изощренных компьютерных программ специалисты по молекулярной биологии и биоинформатике обнаружили в гигантском тексте ДНК уже несколько тысяч человеческих генов, однако приверженцы «генного угара» начали догадываться, что поддающихся счету единиц будет, пожалуй, гораздо меньше, чем они предполагали.
Всегда считалось, что у человека около ста тысяч различных генов. Это приблизительно вчетверо больше, чем, например, у резуховидки Таля, что прекрасно объясняло, почему мы намного сложнее маленького растения. Однако после интерпретации первых полностью расшифрованных хромосом ученые призадумались. Там обнаружилось так мало осмысленных отрезков, разбросанных среди кажущего бессмысленным общего текста, что многие пересмотрели оценку общего размера генома в сторону уменьшения.
Итак, в Колд-Спринг-Харбор царила растерянность. А поскольку ученые-естественники всегда немного игроки, британскому генетику Эвану Берни приходит в голову великолепная идея. Он предлагает участникам симпозиума поучаствовать в «генном тотализаторе». Каждый должен оценить, сколько различных генов будет однажды определено в наследственном материале человека. Затем игроки могут поставить до 20 долларов США и зафиксировать свои ставки в записной книжке Берни. В 2003 году все деньги достанутся тому, чья цифра окажется ближе всего к результату.
Цифры из записной книжки Эвана Берни лучше, чем что-либо иное, иллюстрируют тогдашнее неведение генетиков: оценки коллег колеблются между 27 и 160 тысячами генов. В среднем ученые рассчитывали на пятьдесят тысяч. Даже эксперты, участники этой конференции, не имели ни малейшего представления о количестве человеческих генов. И это несмотря на то, что именно они мало-помалу выявляли их в длительном процессе расшифровки генома и что на тот момент вряд ли нашелся бы человек, который смог бы угадать ответ точнее, чем сами генетики.