Ознакомительная версия. Доступно 12 страниц из 58
Деление клетки
Чтобы заменять мертвые или поврежденные структуры, клеткам нужно делиться. Кроме того, деление необходимо для роста и создания половых клеток, которые «собирают» нас из оплодотворенного яйца и превращают во взрослого человека. Деление клеток является сложным процессом, который подчиняется строгим правилам. Невыполнение этих правил может не только нести катастрофические последствия отдельной клетке, но и поставить под удар сам факт нашего существования.
В зависимости от сообщений, получаемых клеткой, она может находиться в состоянии покоя и выполнять свои обычные задачи, либо переходить в фазу активного деления. Часть клеточного цикла, предшествующая непосредственному делению, называют интерфазой. Во время этой фазы клетка увеличивается в размере, удваивает количество органелл, реплицирует ДНК и готовится к делению. Далее, в зависимости от типа клетки, она будет делиться с помощью митоза или мейоза.
Мейоз
Для полового размножения характерен тип деления клетки под названием «мейоз», при котором образуются сперматозоиды и яйцеклетки. Мейоз создает четыре неидентичные дочерние клетки, каждая из которых содержит половину хромосомного набора родителя (гаплоидное число хромосом). Это происходит, потому что клетка делится дважды. В отличие от митоза, дочерние клетки в данном случае генетически отличаются друг от друга и от клеток родителей.
Перед 1-м делением мейоза сперматоцит (будущий сперматозоид) проходит через интерфазу. Затем начинается первая фаза – профаза 1, в ходе которой гомологические пары хромосом обмениваются генетическим материалом. У яйцеклеток 2-е деление мейоза завершается при оплодотворении.
Митоз
В результате митоза образуются две идентичные дочерние клетки, каждая из которых содержит то же диплоидное число хромосом, что и родительская клетка. Клетка делится один раз, но хромосомы исполняют причудливый четырехфазный танец.
Профаза.
На первом этапе деления, называемом профазой, растворяется ядерная оболочка и конденсируются сестринские хроматиды. Хроматиды сходятся на центромере, чтобы затем объединиться с парами хроматид, унаследованных от другого родителя.
Метафаза.
Все хромосомы сходятся на экваторе (в центре). Им помогают канатовидные белки, или микротрубочки, которые связывают между собой центромеры каждой хромосомы. Сами же микротрубочки прикрепляются к лебедкообразной перетяжке – центросоме, которая располагает их в нужном порядке.
Анафаза.
Центросома катализирует следующую фазу – анафазу, в которой сестринские хроматиды расходятся к противоположным полюсам клетки.
Телофаза.
Вокруг новообразованных хроматид вновь формируется ядерная оболочка, а цитоплазма разделяется на две части.
Цитокинез.
В процессе цитокинеза клетка окончательно расщепляется на две части и «оборачивается» в клеточную мембрану.
Многообразие клеток
Клетки в организме трудятся на благо своего хозяина, то есть нас. Эта внутренняя рабочая сила с различным опытом, компетенциями и ролями позволяет создавать более крепкую и динамичную структуру. Именно поэтому мы не похожи на гигантскую амебу или пласт однообразных клеток. По последним данным, в нас «живет» порядка 206 различных типов клеток, каждая из которых по-своему выполняет нужные команды. Давайте познакомимся с некоторыми из этих типов.
Фоторецепторы
Фоторецепторы – это клетки сетчатки, расположенной на задней стенке глаза. Они содержат светочувствительные пигменты, которые отвечают за реакцию на входящий свет, благодаря чему мы можем видеть. Эти уникальные клетки созданы для преобразования картинки, попадающей в глаз, в нервный импульс, который наш мозг интерпретирует как визуальный образ. Существует два типа фоторецепторов: палочки улавливают свет, темноту и движение, а колбочки отвечают за восприятие цвета.
Палочки и колбочки заселяют наружные слои тонкой ткани специализированных клеток, которые называются сетчаткой. Палочки более многочисленны, особенно на краях сетчатки. В центре сетчатки больше колбочек.
Вдоль кишечника и дыхательных Микроворсинки путей располагаются бокаловидные клетки. Они содержат множество секреторных пузырьков, которые вырабатывают защитное вещество – слизь.
Красные кровяные тельца
Чтобы выполнять важнейшую функцию в клетке, эритроцитам пришлось пожертвовать своим ядром в обмен на дополнительную рабочую поверхность. Структурная модификация, отличающая эритроциты от остальных клеток организма, позволяет им переносить как можно больше кислорода и доставлять этот жизнеобеспечивающий газ в наши ткани. Это чрезвычайно важная работа, поэтому эритроциты составляют почти треть всей популяции клеток в организме.
Гормоны и создание ферментов
Клетки, расположенные в эндокринной и пищеварительной системах, выполняют свои функции с помощь дополнительных инструментов. В этих клетках содержатся дополнительные рибосомы и комплексы Гольджи. Они нужны для производства и упаковки гормонов и пищеварительных ферментов, которые затем выделяются в кровь (гормоны) или желудок (ферменты).
Остеоцит занимает определенную костную область – лакуну. Его множество отростков (выростов цитоплазмы) соединяются с другими остеоцитами с помощью крошечных каналов, называемых канальцами.
Костные клетки
Самые твердые клетки располагаются в костном отделе, который постоянно обновляется и перестраивается. Эту работу делят три типа клеток. Остеобласты создают основу (матрикс) для формирования кости. Некоторые остеобласты «дорастают» до клеток остеоцитов, которые в буквальном смысле врастают в создаваемую ими субстанцию. Остеоциты – самый распространенный тип костных клеток. Они образуют большую часть кости, а также помогают в ее координации и перестройке, особенно при стрессе. Остеокласты, наоборот, реабсорбируют костный материал для высвобождения необходимых минералов (например, кальция) из матрикса или после периодов бездействия.
Стволовые клетки
Ознакомительная версия. Доступно 12 страниц из 58