Ознакомительная версия. Доступно 20 страниц из 100
Поскольку мы знаем количество газа, необходимое для наблюдаемого спектра поглощения, и поверхностную гравитацию, выведенную из массы и радиуса Титана, мы можем вычислить минимальное атмосферное давление. Оно составляет приблизительно 10 мбар, около одного процента атмосферного давления Земли – это больше, чем давление на Марсе. Титан имеет атмосферное давление, самое близкое к земному в Солнечной системе.
Не только лучшие, но единственные визуальные наблюдения Титана в телескоп были сделаны Одуэном Дольфюсом в Мёдонской обсерватории во Франции. Это нарисованные от руки изображения Титана в момент стабильности атмосферы. Дольфюс заметил перемещение пятен и пришел к выводу, что то, что происходит на Титане, не соответствует периоду вращения спутника. (Считается, что Титан всегда обращен одной стороной к Сатурну, как наша Луна к Земле.) Дольфюс предположил, что на Титане могут быть облака, по крайней мере местами.
За последние годы мы много узнали о Титане. Астрономы успешно получили кривую поляризации малых объектов. Идея заключается в том, что изначально неполяризованный солнечный свет падает, скажем, на Титан и, отражаясь, поляризуется. Поляризация регистрируется устройством, которое действует по принципу «полароидных» солнцезащитных очков, но более сложным и чувствительным. Степень поляризации измеряется, когда Титан проходит через малый ряд фаз – между «полным» Титаном и приближающимся к серповидному. Полученная в результате кривая поляризации сравнивается с кривыми поляризации, построенными в лабораторных условиях, и таким образом мы узнаем о размере и составе вещества, ответственного за эффект поляризации.
Первые наблюдения поляризации Титана, сделанные Джозефом Веверкой, показали, что солнечный свет, отраженный от Титана, скорее всего, отражается от облаков, а не от твердой поверхности. Видимо, на Титане есть поверхность и более низкие слои атмосферы, которые мы не видим; густая пелена облаков и расположенная над ней атмосфера, которые мы видим, и над всем этим изредка появляются рваные облака. Поскольку Титан кажется красным и красный свет идет от пелены облаков, согласно этому аргументу, на Титане должны быть красные облака.
Дополнительным подтверждением этой теории является чрезвычайно малое количество ультрафиолета, который отражается от Титана, согласно измерениям Орбитальной астрономической обсерватории. Единственное объяснение слабой яркости отраженного ультрафиолета заключается в том, что ультрафиолет поглощается в высоких слоях атмосферы. Иначе благодаря рэлеевскому рассеянию на самих молекулах атмосферы Титан отражал бы яркий ультрафиолет. (Рэлеевское рассеяние – это преобладающее рассеяние голубого, а не красного цвета, который отвечает за голубые небеса на Земле.)
Но вещество, которое поглощает фиолетовые и ультрафиолетовые лучи, кажется красным в отраженном свете. Так что существует две отдельные цепочки доказательств (или три, если верить рисункам, сделанным от руки) в пользу обширного облачного покрова на Титане. Что мы имеем в виду под обширным? В соответствии с данными о поляризации более 90 % поверхности Титана закрыто облаками. Так что Титан, по всей видимости, покрыт плотными красными облаками.
Второе удивительное открытие было сделано в 1971 г., когда Д. Аллен из Кембриджского университета и Т. Мердок из Университета Миннесоты обнаружили, что наблюдаемое инфракрасное излучение Титана при длине волны от 10 до 14 мкм более чем вдвое интенсивнее излучения, ожидаемого от нагрева Солнцем. Титан слишком мал, чтобы иметь сильный источник внутренней энергии, как Юпитер или Сатурн. Это можно объяснить только тем, что при парниковом эффекте температура поверхности поднимается до тех пор, пока исходящее от планеты инфракрасное излучение не уравновешивает поглощаемое видимое излучение. Именно парниковый эффект поддерживает температуру поверхности Земли выше температуры замерзания и температуру Венеры на уровне 480 °С.
Но что может вызывать парниковый эффект на Титане? Вряд ли углекислый газ и водяной пар, как на Земле и Венере, потому что эти газы замерзли бы на Титане. Я подсчитал, что для такого парникового эффекта необходимо несколько сотен миллибар водорода (1000 мбар – это атмосферное давление на Земле на уровне моря). Поскольку это больше наблюдаемого количества водорода, облака должны быть плотными при определенной длине волн коротковолнового диапазона и почти прозрачными при определенной длине волн длинноволнового диапазона. Джеймс Поллак из Исследовательского центра Эймса НАСА подсчитал, что нескольких сотен миллибар метана также может быть достаточно, и, более того, они могли бы послужить объяснением некоторых особенностей инфракрасного излучения Титана. Такое большое количество метана также должно быть спрятано под облаками. В обеих моделях парникового эффекта фигурируют только газы, которые, как предполагается, существуют на Титане; конечно, могут играть роль и оба газа.
Альтернативная модель атмосферы Титана была предложена покойным Робертом Дэниелсоном и его коллегами из Принстонского университета. Они предположили, что простые углеводороды – такие как этан, этилен и ацетилен, – которые наблюдаются в верхних слоях атмосферы Титана, могут поглощать ультрафиолет, исходящий от Солнца, и нагревать верхние слои атмосферы. В таком случае мы видим в инфракрасном свете горячие верхние слои атмосферы, а не поверхность планеты. Эта модель не включает ни теплую поверхность непонятного происхождения, ни парниковый эффект, ни атмосферное давление в сотни миллибар.
Какая же точка зрения верна? В настоящее время никто не знает. Эта ситуация напоминает исследования Венеры в начале 1960-х гг., когда было известно, что радиояркостная температура планеты высокая, но по поводу того, исходит излучение от горячей поверхности или от горячих слоев атмосферы, велись жаркие споры. Поскольку радиоволны проходят через что угодно, кроме самой плотной атмосферы и облаков, проблема Титана могла бы быть решена, если бы мы располагали надежными измерениями радиояркостной температуры этого спутника. Первым, кто измерил ее с помощью огромного интерферометра Национальной радиоастрономической обсерватории в Грин-Бэнк, Западная Вирджиния, был Фрэнк Бриггс из Корнуолла. Бриггс измерил температуру поверхности Титана, которая составила –140 °С, с погрешностью 45°. Температура без парникового эффекта должна составлять около –185 °С. Следовательно, наблюдения Бриггса предполагают довольно значительный парниковый эффект и плотную атмосферу, но вероятная погрешность измерений все же так велика, что парниковый эффект может и отсутствовать.
В ходе последующих наблюдений, сделанных двумя другими радиоастрономическими группами, были получены величины, которые были и выше, и ниже результатов Бриггса. Как ни удивительно, самый высокий диапазон температур даже приближается к температурам в холодных регионах Земли. Наблюдаемая ситуация, как и атмосфера Титана, довольно мутная. Эту проблему можно было бы решить, если бы мы могли измерить площадь твердой поверхности Титана радиолокационными методами (в результате оптических измерений мы знаем диаметр Титана по вершинам его облаков). Возможно, для решения этой проблемы придется подождать исследований миссии «Вояджера», в ходе которой к Титану будут посланы два сложных космических аппарата – один подойдет к нему очень близко – в 1981 г.
Ознакомительная версия. Доступно 20 страниц из 100