Топ за месяц!🔥
Книжки » Книги » Домашняя » Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку 📕 - Книга онлайн бесплатно

Книга Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку

234
0
На нашем литературном портале можно бесплатно читать книгу Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 57 58 59 ... 110
Перейти на страницу:
Конец ознакомительного отрывкаКупить и скачать книгу

Ознакомительная версия. Доступно 22 страниц из 110

В работах Рамануджана число 24 фигурирует постоянно. Такие числа математики называют «магическими»: они постоянно появляются там, где их совсем не ждёшь, по причинам, которых никто не понимает. Так и функция Рамануджана волшебным образом возникла в теории струн. Число 24, фигурирующее в функции Рамануджана, так же является источником удивительных сокращений в теории струн. В этой теории все 24 режима функции Рамануджана соответствуют физическим колебаниям струны. Всякий раз, когда струна совершает сложные перемещения в пространстве-времени, разделяясь и восстанавливаясь, необходимо соответствие большому количеству чрезвычайно сложных математических тождеств. Эти тождества и были открыты Рамануджаном. (Поскольку физики добавляют ещё два измерения, вычисляя общее количество колебаний, фигурирующих в релятивистской теории, это означает, что пространство-время должно иметь 24 + 2 = 26 пространственно-временных измерений{69}.)

Когда функция Рамануджана представлена в обобщённом виде, число 24 заменяется числом 8. Таким образом, критическое число для суперструн — 8 + 2, или 10. Отсюда и вытекает десятое измерение. Струна колеблется в десяти измерениях потому, что ей необходимы обобщённые функции Рамануджана, чтобы сохранять самосогласованность. Другими словами, физики не имеют ни малейшего представления о том, почему 10 и 26 измерений возникли как измерения струны. Создаётся впечатление, что в этих функциях проявляется некая скрытая нумерология, которую никто не понимает. Именно эти магические числа возникают в эллиптической модулярной функции, которая определяет количество измерений пространства-времени равным десяти.

В конечном итоге источник десятимерной теории так же загадочен, как сам Рамануджан. На вопрос слушателей, зачем природе существовать в десяти измерениях, физики вынуждены отвечать: «Не знаем». Мы имеем смутное представление о том, почему требуется выбирать несколько измерений пространства-времени (иначе струна не в состоянии колебаться самосогласованным квантовым образом), но не знаем, почему выбор падает на эти конкретные числа. Вероятно, разгадка ждёт, когда её обнаружат в утраченных тетрадях Рамануджана.

100 лет математики, открытые заново

Рамануджан родился в 1887 г. в Эроде, Индия, близ Мадраса. Его семья принадлежала к высшей индуистской касте браминов, однако обеднела и жила на скудные заработки отца Рамануджана, служившего клерком в конторе торговца платьем.

К тому времени, как Рамануджану исполнилось 10 лет, стало ясно, что он отличается от других детей. Как и Риман до него, он прославился в округе удивительными математическими способностями. Ещё ребёнком он сам вывел тождество Эйлера между тригонометрическими и экспоненциальными функциями.

В жизни каждого молодого учёного есть поворотный момент — некое событие, определяющее дальнейший ход его жизни. Для Эйнштейна таким событием стало озарение при виде стрелки компаса. Для Римана — чтение книги Лежандра по теории чисел. А для Рамануджана такой момент наступил, когда он наткнулся на ничем не примечательный и забытый труд математика Джорджа Карра. Он был единственным для Рамануджана источником сведений о западной математике того времени, что и сделало книгу знаменитой. По словам его сестры, «именно эта книга пробудила в нём дар. Он поставил перед собой задачу доказать формулы, приведённые в ней. Поскольку он не мог обратиться к другим книгам, каждое решение представляло собой исследование, в котором он заходил так далеко, как считал нужным… Рамануджан часто повторял, что богиня Намаккал вдохновляет его формулами во сне»{70}.

Блестящие способности помогли Рамануджану получить стипендию для обучения в старших классах школы. Но школьная рутина наскучила ему, вдобавок он был настолько поглощён формулами, которые постоянно роились у него в голове, что перейти в выпускной класс не смог и лишился стипендии. В досаде Рамануджан сбежал из дома. В конце концов он вернулся, но заболел и вновь провалился на экзаменах.

Друзья помогли Рамануджану устроиться мелким служащим в мадрасский порт. Эта неквалифицированная работа, за которую платили всего 20 фунтов стерлингов в год, освободила Рамануджана (как Эйнштейна — работа в швейцарском патентном бюро) и дала ему возможность посвятить свободное время своим увлечениям. Результаты сновидений Рамануджан отправил трём известным британским математикам, надеясь установить контакты и с другими специалистами в этой области. Двое математиков, получив письмо от никому не известного индийского клерка, не имеющего официального образования, просто выбросили его. Третьим был талантливый математик из Кембриджа Годфри Харди. Благодаря своему положению Харди привык к странным письмам от незнакомцев и не ждал от очередного послания ничего хорошего. На сплошь исписанных листах он заметил немало уже известных математических теорем. Решив, что к нему обратился явный плагиатор, Харди не стал читать дальше. Но что-то не давало ему покоя. Какая-то мысль точила Харди, не позволяя забыть о странном письме.

И вот 16 января 1913 г. Харди и его коллега Джон Литтлвуд завели за ужином разговор о письме незнакомца и решили ещё раз взглянуть на него. Оно начиналось незатейливо: «Покорнейше прошу позволения представиться: клерк бухгалтерии мадрасского порта с жалованьем всего 20 фунтов в год»{71}. Однако письмо от неимущего клерка из Мадраса содержало теоремы, совершенно не известные западным математикам. Всего в нём обнаружилось 120 теорем. Харди был ошеломлён. Он вспоминал, что доказательство некоторых из них «совершенно уничтожило» его, и писал: «Я никогда не видел ничего подобного. С первого взгляда становилось ясно, что такие записи мог сделать только математик высочайшего класса»{72}.

Литтлвуд и Харди пришли к одному и тому же поразительному выводу: перед ними явно работа гения, в одиночку проделавшего столетний путь европейских математиков. «Перед ним стояла почти невыполнимая задача: бедный индус, располагающий только своим умом, в одиночку противостоял совокупной мудрости Европы», — вспоминал Харди{73}.

Ознакомительная версия. Доступно 22 страниц из 110

1 ... 57 58 59 ... 110
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку», после закрытия браузера.

Комментарии и отзывы (0) к книге "Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку"