Топ за месяц!🔥
Книжки » Книги » Домашняя » Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу 📕 - Книга онлайн бесплатно

Книга Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу

446
0
На нашем литературном портале можно бесплатно читать книгу Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 55 56 57 ... 65
Перейти на страницу:

Конечно, возникает новый вопрос: откуда бозоны Хиггса вообще взялись? Ответ пока неизвестен, но считается, что это остатки так называемого фазового перехода, который произошел вскоре после Большого взрыва. Если достаточно долго смотреть на оконное стекло зимним вечером, когда становится холоднее, вы увидите, как из водяного пара ночного воздуха, словно по волшебству, возникает структурированное совершенство ледяных кристаллов. Переход от водяного пара ко льду на холодном стекле – это и есть фазовый переход, поскольку молекулы воды переформируются в ледяные кристаллы; это спонтанное нарушение симметрии бесформенного облака пара вследствие понижения температуры. Ледяные кристаллы формируются, потому что это энергетически благоприятно. Как мяч катится с горы, чтобы внизу прийти к более низкому энергетическому состоянию, как электроны перестраиваются вокруг атомных ядер, формируя связи, удерживающие молекулы вместе, так и точеная красота снежинки – это конфигурация молекул воды с более низкой энергией, чем бесформенное облако пара.

Мы полагаем, что нечто подобное произошло и в начале истории Вселенной. Новорожденная Вселенная представляла собой изначально горячие частицы газа, затем расширилась и охладилась, и выяснилось, что вакуум без бозонов Хиггса оказался энергетически неблагоприятным, и естественным стало состояние вакуума, полного частиц Хиггса. Этот процесс, по сути, схож с конденсацией воды в капли или льдинки на холодном стекле. Спонтанное образование капелек воды при их конденсации на холодном стекле создает впечатление, что они попросту образовались «ниоткуда». Так и в случае с бозонами Хиггса: на горячих стадиях сразу после Большого взрыва вакуум кипел мимолетными квантовыми флуктуациями (представленными петлями на наших диаграммах Фейнмана): частицы и античастицы возникали из ниоткуда и снова исчезали в никуда. Однако затем, когда Вселенная остыла, произошло нечто радикальное: внезапно, из ниоткуда, как капля воды появляется на стекле, возник «конденсат» частиц Хиггса, которые сначала удерживались вместе благодаря взаимодействию, объединенные в недолговечную взвесь, через которую распространялись другие частицы.

Представление о том, что вакуум заполнен материалом, предполагает, что мы, как и все остальное во Вселенной, живем внутри гигантского конденсата, который возник при остывании Вселенной, как возникает на рассвете утренняя роса. Чтобы мы не думали, что вакуум обрел содержание лишь в результате конденсации бозонов Хиггса, укажем, что в вакууме есть не только они. По мере дальнейшего охлаждения Вселенной кварки и глюоны тоже конденсировались, и получились, что неудивительно, кварковые и глюонные конденсаты. Существование этих двух хорошо установлено экспериментально, и они играют очень важную роль в нашем понимании сильного ядерного взаимодействия. На самом деле именно благодаря этой конденсации появилась большая часть массы протонов и нейтронов. Вакуум Хиггса, таким образом, в конечном счете создал наблюдаемые нами массы элементарных частиц – кварков, электронов, тау-, W– и Z-частиц. Кварковый конденсат включается в дело, когда нужно объяснить, что происходит, если множество кварков объединяется в протон или нейтрон. Интересно, что хотя механизм Хиггса имеет относительно немного значения для объяснения массы протонов, нейтронов и тяжелых атомных ядер, то для объяснения масс W– и Z-частиц он очень важен. Для них кварковые и глюонные конденсаты в отсутствие частицы Хиггса создали бы массу примерно 1 ГэВ, но экспериментально полученные массы этих частиц примерно в 100 раз выше. БАК был предназначен для работы в энергетической зоне W– и Z-частиц, чтобы выяснить, какой механизм отвечает за их сравнительно большую массу. Что это за механизм – долгожданный бозон Хиггса или что-то такое, о чем никто и подумать не мог, – покажут только время и столкновения частиц.

Разбавим рассуждения некоторыми удивительными цифрами: энергия, заключенная в 1 м3 пустого пространства в результате конденсации кварков и глюонов, равняется невероятным 1035 джоулям, а энергия в результате конденсации частиц Хиггса еще в 100 раз больше. Вместе они равняются тому количеству энергии, которое наше Солнце производит за 1000 лет. Точнее говоря, это «отрицательная» энергия, потому что вакуум находится в более низком энергетическом состоянии, чем Вселенная, которая не содержит никаких частиц. Отрицательная энергия – это энергия связи, сопровождающая образование конденсатов и сама по себе ни в коей мере не загадочная. Она не более удивительна, чем тот факт, что для кипячения воды (и обращения фазового перехода из пара в жидкость) нужно приложить энергию.

Но загадка все же есть: такая высокая отрицательная энергетическая плотность каждого квадратного метра пустого пространства должна бы вообще-то принести во Вселенную такое опустошение, что не появились бы ни звезды, ни люди. Вселенная буквально разлетелась бы на части через мгновения после Большого взрыва. Вот что произошло бы, если бы мы взяли из физики частиц предсказания о вакуумной конденсации и непосредственно добавили их в гравитационные уравнения Эйнштейна, применив для всей Вселенной. Этот малоприятный ребус известен как проблема космологической константы[55]. Собственно, это одна из центральных проблем фундаментальной физики. Она напоминает, что заявлять о полном понимании природы вакуума и/или гравитации надо с большой осторожностью. Пока мы не понимаем чего-то весьма фундаментального.

На этом предложении заканчиваем повествование, потому что дошли до границ нашего познания. Зона познанного – это не то, с чем работает ученый-исследователь. Квантовая теория, как мы заметили еще в начале книги, имеет репутацию сложной и откровенно странной, поскольку позволяет едва ли не любое поведение материальных частиц. Но все, что мы описали, за исключением этой последней главы, известно и хорошо понятно. Следуя не здравому смыслу, а доказательствам, мы пришли к теории, способной описать огромное количество явлений – от лучей, испускаемых горячими атомами, до ядерного синтеза в звездах. Практическое применение этой теории привело к самому важному технологическому прорыву XX века – появлению транзистора, а работа этого устройства была бы совершенно непонятной без квантового подхода к миру.

Но квантовая теория нечто гораздо большее, чем просто триумф пояснений. В результате насильно заключенного брака между квантовой теорией и относительностью в качестве теоретической необходимости появилась антиматерия, которую после этого действительно открыли. Спин – фундаментальное свойство субатомных частиц, лежащее в основе стабильности атомов, – тоже изначально был теоретическим предсказанием, которое требовалось для устойчивости теории. А сейчас, во втором квантовом столетии, Большой адронный коллайдер отправляется в неизведанное, чтобы исследовать сам вакуум. Это и есть научный прогресс: постоянное и тщательное создание набора объяснений и предсказаний, в итоге изменяющего нашу жизнь. Это и отличает науку от всего остального. Наука – это не просто иная точка зрения, она отражает реальность, которую было бы сложно представить даже обладателю самого извращенного и сюрреалистического воображения. Наука – это исследование реальности, и если реальность оказывается при этом сюрреалистической, значит, она такая и есть. Квантовая теория – наилучший пример силы научного метода. Никто бы не смог выдвинуть ее без как можно более тщательных и подробных экспериментов, а физики-теоретики, ее создавшие, смогли отбросить свои глубоко укоренившиеся комфортные представления о мире, чтобы объяснить лежащие перед ними доказательства. Возможно, загадка вакуумной энергии – зов к новому квантовому путешествию; возможно, БАК предоставит новые и необъяснимые данные; возможно, все, что содержится в этой книге, окажется лишь приближением к гораздо более глубокой картине – удивительный путь к пониманию нашей квантовой Вселенной продолжается.

1 ... 55 56 57 ... 65
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу», после закрытия браузера.

Комментарии и отзывы (0) к книге "Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу"