В ту далекую эпоху во Вселенной будут присутствовать фотоны, нейтрино, электронно-позитронная плазма и черные дыры. Основная часть массы окажется сосредоточенной в фотонах и нейтрино. Ибо именно в эти виды материи превратится обычное вещество после распада. Начнется эра излучения. Правда, надо помнить, что это излучение – чрезвычайно сильно остывшее.
И. Д. Новиков. Черные дыры и Вселенная За гранью сотен тысяч миллиардов лет наступит Эпоха распада. Здесь уже астрономы начинают путаться в своих сценариях эволюции Вселенной. Наиболее вероятно лишь то, что Эпоха вещества заканчивается рассеиванием газопылевых облаков, в которых когда-то зарождались звезды. Не совсем ясен и дальнейший путь развития, или, правильнее сказать, распада сверхгигантских супергалактик, образовавшихся на исходе Эры вещества из тысяч и даже миллионов галактик наподобие нашего Млечного пути, давно уже слившегося (спустя двадцать миллиардов лет после Большого взрыва) с Туманностью Андромеды.
Скорее всего, началом Эпохи распада, как предпоследним актом вселенской драмы угасания нашего мира, следует считать распад остатков планетарных систем. При этом погасшие звезды будут терять свои оставшиеся планеты, увлекаемые их звездными соседями. Вопрос лишь в том, как именно это будет происходить, и тут астрофизики советуют обратить самое пристальное внимание на современные кратные звездные системы с участием коричневых карликов. Именно такие двойные погасшие звезды будут преобладать в далеком будущем. Действительно, наблюдая молодые бурые карлики, нельзя не заметить, что отгорев или даже еще не родившись, звезда оказывается в удивительно стабильном состоянии, которое может длиться многие миллиарды миллиардов лет, вплоть до таинственной Эры галактических распадов. В современной, сравнительно молодой Вселенной таких объектов не так уж и много, но со временем именно они составят основную массу видимой материи.
При наблюдении звезд в телескоп или сильный бинокль видно, что многие из них, кажущиеся одиночными, распадаются на пары и даже маленькие группы. Двойные звезды кружатся друг вокруг друга, удерживаемые силами тяготения. Чаще всего они происходят из одного протозвездного облака; бывают и пары, образовавшиеся в результате захвата одной звезды другой при тесном сближении – особенно часто это должно происходить в гуще шаровых скоплений и центральных областях галактик. Изучение двойных систем очень важно для всей звездной астрофизики, поскольку именно в них можно определять важнейшие параметры звезд.
Кажется неоспоримым, что жизненные коллизии взаимодействующих двойных звезд гораздо интереснее существования одинокой звезды. Но почему бы не поговорить о тройных, четверных и т. д. системах? Оказывается, что создать систему, в которой друг с другом взаимодействовали бы три звезды или более, очень нелегко: система будет гравитационно неустойчива, и звезды будут напоминать шарики на игольном острие. Малейшее колебание поля тяготения столкнет их, и они будут выброшены в дальнее космическое пространство: расстояние между компонентами станет настолько велико, что всякое взаимодействие прекратится. При определенных условиях могут проявить устойчивость лишь «трехкратные» и «четырехкратные» системы, причем в последних соседствуют как бы две пары.
Вообще говоря, тесная взаимодействующая пара сама по себе очень напоминает составную «парную звезду». Поэтому теоретически можно представить и многокомпонентную звездную семью, где каждая компонента сама по себе может быть тесной двойной системой. В этом случае тесные внутренние пары притягивают друг друга почти как точечные тела, и система оказывается устойчивой.
Вспомним общие черты эволюции одиночных звезд при смене их источников энергии. Сначала за счет гравитационной неустойчивости из межзвездной среды конденсируется протозвездное облако. Оно уплотняется, температура в его центре растет и, наконец, становится такой высокой, что в центре облака, теперь уже ставшего звездой, загорается водород. Водород после цепочки реакций превращается в гелий. В этом состоянии звезда проводит почти всю свою жизнь. После исчерпания водорода в центре звезды она попадает в разряд красных гигантов или сверхгигантов. Затем водородное топливо сменяется гелием, и далее начинаются превращения все более тяжелых элементов, вплоть до железа. В конце концов, в зависимости от массы, звезда превратится в нейтронную звезду или белый карлик. Есть тут и другие варианты, но мы их рассмотрим позже, когда будем описывать Эпоху черных дыр.