Топ за месяц!🔥
Книжки » Книги » Домашняя » Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу 📕 - Книга онлайн бесплатно

Книга Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу

446
0
На нашем литературном портале можно бесплатно читать книгу Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу полная версия. Жанр: Книги / Домашняя. Онлайн библиотека дает возможность прочитать весь текст произведения на мобильном телефоне или десктопе даже без регистрации и СМС подтверждения на нашем сайте онлайн книг knizki.com.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 50 51 52 ... 65
Перейти на страницу:

Для ответа на этот вопрос представим, что мы ведем видеосъемку электрона, двигающегося поблизости от какого-то магнита, как показано на рис. 10.4. Если электрон движется не слишком быстро[48], он будет совершать обычные круговые движения. Возможность отклонения электронов магнитом – это, как мы уже говорили, основная идея работы не только старомодных телевизоров на катодно-лучевых трубках, но и ускорителей частиц, в том числе Большого адронного коллайдера.


Рис. 10.4. Электрон, движущийся вокруг магнита


А теперь представьте, что будет, если пустить видеозапись задом наперед. Именно так «электрон, который движется назад во времени» и будет выглядеть с точки зрения наблюдателя, который «движется вперед во времени». Теперь мы видим, как «движущийся назад во времени» электрон вращается в противоположном направлении по мере того, как идет запись. С точки зрения физика видеозапись частицы, движущейся назад во времени, идентична видеозаписи частицы, движущейся вперед во времени, с тем исключением, что эта частица будет нести положительный электрический заряд. Итак, мы получили ответ на свой вопрос: электроны, движущиеся назад во времени, выглядят как «электроны с положительным зарядом».

Таким образом, если электроны действительно совершают путешествия назад во времени, мы можем ожидать, что столкнемся к некими «электронами с положительным зарядом».

Такие частицы действительно существуют и называются «позитронами». Понятие этих частиц ввел в начале 1931 года Дирак, чтобы решить проблему, вставшую при выводе квантово-механического уравнения для электрона: уравнение, судя по всему, предсказывало существование частиц с отрицательной энергией. Позднее Дирак рассказал, о чем думал в этот момент, и признался, в частности, что был твердо уверен в правильности математики: «Я смирился с тем фактом, что отрицательные энергетические состояния нельзя исключить из математической теории, и решил, что нужно просто найти для них физическое объяснение».

Всего через год Карл Андерсон, который, судя по всему, не был знаком с предсказаниями Дирака, заметил некоторые странности в работе своего экспериментального аппарата по наблюдению частиц из состава космического излучения. Он сделал следующий вывод: «Кажется необходимым призвать на помощь положительно заряженную частицу, масса которой сопоставима с массой электрона». Это еще один образец всей мощи математических рассуждений. Чтобы объяснить математическое уравнение, Дирак ввел идею новой частицы – позитрона, и уже через несколько месяцев было обнаружено, что эта частица порождается в столкновениях частиц космического излучения. Позитрон – наша первая встреча с краеугольным камнем научной фантастики: антиматерией.

Вооружившись интерпретацией путешествующих во времени электронов как позитронов, мы можем закончить работу по объяснению рис. 10.3. Нужно сказать, что, когда фотон достигает точки Y во время T2, он распадается на электрон и позитрон. Каждая из этих частиц движется вперед до времени T3, когда позитрон из точки Y достигает точки X, где сливается с исходным верхним электроном и производит второй фотон. Этот фотон распространяется до времени T4, когда он поглощается нижним электроном.

Может показаться, что все это несколько притянуто за уши: античастицы появились из нашей теории, потому что мы разрешили частицам путешествовать назад во времени. Правила перехода и рассеяния позволяют частицам перескакивать как вперед, так и назад во времени, и несмотря на то, что мы, возможно, хотели бы им это не позволить, оказывается, что мы не можем и не должны им в этом препятствовать. Более того, оказывается, что, если мы не разрешаем частицам перескакивать назад во времени, как раз тогда и нарушается закон причины и следствия. Это странно: кажется, что должно быть ровно наоборот. Однако все не случайно и намекает на лежащие в основе глубинные математические структуры. Возможно, у вас создалось впечатление, что правила перехода и рассеяния частиц установлены как-то произвольно. Можно ли установить еще какие-то правила рассеяния и подрегулировать правила перехода и изучить последствия? Но если сделать так, мы почти наверняка получим плохую теорию – например, такую, которая будет нарушать закон причины и следствия. Квантовая теория поля (QFT) – название той самой глубинной математической структуры, которая и лежит в основе правил перехода и рассеяния. Удивительно, но это единственный способ создать квантовую теорию мельчайших частиц с учетом специальной теории относительности. Вооружившись аппаратом квантовой теории поля, правила перехода и рассеяния частиц становятся незыблемыми, и мы лишаемся свободы выбора. Это очень важный результат для исследователя фундаментальных законов, потому что использование «симметрии» для устранения выбора создает впечатление, что Вселенная просто должна быть «вот такой», и это создает ощущение лучшего ее понимания. Мы использовали здесь слово «симметрия», потому что оно кажется очень подходящим: можно считать, что теории Эйнштейна накладывают симметрические ограничения на структуру пространства и времени. Иные «симметрии» еще более ограничивают правила перехода и рассеяния, и мы вкратце рассмотрим их в следующей главе.

Прежде чем закончить с квантовой электродинамикой, необходимо устранить последнее непонимание. Как вы помните, первый доклад на конференции в Шелтер-Айленде касался лэмбовского перехода – аномалии в спектре водорода, которая не объяснялась в рамках квантовой теории Гейзенберга и Шрёдингера. Через неделю после этой встречи Ганс Бете выдал первые, еще приблизительные вычисления ответа. На рис. 10.5 показан атом водорода с точки зрения квантовой электродинамики. Электромагнитное взаимодействие, связывающее протон и электрон, можно представить в виде ряда диаграмм Фейнмана возрастающей сложности, как и в случае с двумя взаимодействующими электронами на рис. 10.1. Мы изобразили две простейшие возможные диаграммы на рис. 10.5. До квантовой электродинамики расчеты энергетических уровней электрона включали в себя только верхнюю диаграмму на рисунке, которая отражает физику электрона, удерживаемого в потенциальной яме, которая создана протоном. Но мы уже выяснили, что при взаимодействии может произойти еще много всего. Вторая диаграмма на рис. 10.5 показывает кратковременную флуктуацию фотона в электрон-позитронной паре, и этот процесс тоже стоит учесть при расчете возможных энергетических уровней электрона. Эта диаграмма, как и многие другие, вносит в результат подсчетов[49] небольшие коррективы.


Рис. 10.5. Атом водорода

1 ... 50 51 52 ... 65
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу», после закрытия браузера.

Комментарии и отзывы (0) к книге "Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу"