class="p">8266
Dollerup OL, Christensen B, Svart M, et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr. 2018;108(2):343–53. https://pubmed.ncbi.nlm.nih.gov/29992272/
8267
Riche DM, Riche KD, Blackshear CT, et al. Pterostilbene on metabolic parameters: a randomized, double-blind, and placebo-controlled trial. Evid Based Complement Alternat Med. 2014;2014:459165. https://pubmed.ncbi.nlm.nih.gov/25057276/
8268
Airhart SE, Shireman LM, Risler LJ, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12(12):e0186459. https://pubmed.ncbi.nlm.nih.gov/29211728/
8269
Palmer RD, Elnashar MM, Vaccarezza M. Precursor comparisons for the upregulation of nicotinamide adenine dinucleotide. Novel approaches for better aging. Aging Med (Milton). 2021;4(3):214–20. https://pubmed.ncbi.nlm.nih.gov/34553119/
8270
Kourtzidis IA, Stoupas AT, Gioris IS, et al. The NAD+ precursor nicotinamide riboside decreases exercise performance in rats. J Int Soc Sports Nutr. 2016;13:32. https://pubmed.ncbi.nlm.nih.gov/27489522/
8271
Kourtzidis IA, Dolopikou CF, Tsiftsis AN, et al. Nicotinamide riboside supplementation dysregulates redox and energy metabolism in rats: implications for exercise performance. Exp Physiol. 2018;103(10):1357–66. https://pubmed.ncbi.nlm.nih.gov/30007015/
8272
Shi W, Hegeman MA, Doncheva A, Bekkenkamp-Grovenstein M, de Boer VCJ, Keijer J. High dose of dietary nicotinamide riboside induces glucose intolerance and white adipose tissue dysfunction in mice fed a mildly obesogenic diet. Nutrients. 2019;11(10):2439. https://pubmed.ncbi.nlm.nih.gov/31614949/
8273
Sun P, Qie S, Pan B. Nicotinamide riboside will play an important role in anti-aging therapy in humans, especially in the face skin anti-aging treatment. Aesthetic Plast Surg. 2022;46(Suppl 1):192–4. https://pubmed.ncbi.nlm.nih.gov/33977340/
8274
Turck D, Castenmiller J, de Henauw S, et al. Safety of nicotinamide riboside chloride as a novel food pursuant to Regulation (EU) 2015/2283 and bioavailability of nicotinamide from this source, in the context of Directive 2002/46/EC. EFSA J. 2019;17(8):5775. https://pubmed.ncbi.nlm.nih.gov/32626405/
8275
Leduc-Gaudet JP, Dulac M, Reynaud O, Ayoub MB, Gouspillou G. Nicotinamide riboside supplementation to improve skeletal muscle mitochondrial health and whole-body glucose homeostasis: does it actually work in humans? J Physiol. 2020;598(4):619–20. https://pubmed.ncbi.nlm.nih.gov/31879956/
8276
Yoshino J, Baur JA, Imai SI. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513–28. https://pubmed.ncbi.nlm.nih.gov/29249689/
8277
Okabe K, Yaku K, Uchida Y, et al. Oral administration of nicotinamide mononucleotide is safe and efficiently increases blood nicotinamide adenine dinucleotide levels in healthy subjects. Front Nutr. 2022;9:868640. https://pubmed.ncbi.nlm.nih.gov/35479740/
8278
Airhart SE, Shireman LM, Risler LJ, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12(12):e0186459. https://pubmed.ncbi.nlm.nih.gov/29211728/
8279
Soma M, Lalam SK. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol Biol Rep. 2022;49(10):9737–48. https://pubmed.ncbi.nlm.nih.gov/35441939/
8280
Poddar SK, Sifat AE, Haque S, Nahid NA, Chowdhury S, Mehedi I. Nicotinamide mononucleotide: exploration of diverse therapeutic applications of a potential molecule. Biomolecules. 2019;9(1):34. https://pubmed.ncbi.nlm.nih.gov/30669679/
8281
Schmidt MS, Brenner C. Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat Metab. 2019;1(7):660–1. https://pubmed.ncbi.nlm.nih.gov/32694648/
8282
Grozio A, Mills KF, Yoshino J, et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat Metab. 2019;1(1):47–57. https://pubmed.ncbi.nlm.nih.gov/31131364/
8283
Mills KF, Yoshida S, Stein LR, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806. https://pubmed.ncbi.nlm.nih.gov/28068222/
8284
Zhang H, Ryu D, Wu Y, et al. NAD¿ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436–43. https://pubmed.ncbi.nlm.nih.gov/27127236/
8285
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8286
Irie J, Inagaki E, Fujita M, et al. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr J. 2020;67(2):153–60. https://pubmed.ncbi.nlm.nih.gov/31685720/
8287
Okabe K, Yaku K, Uchida Y, et al. Oral administration of nicotinamide mononucleotide is safe and efficiently increases blood nicotinamide adenine dinucleotide levels in healthy subjects. Front Nutr. 2022;9:868640. https://pubmed.ncbi.nlm.nih.gov/35479740/
8288
Yoshino M, Yoshino J, Kayser BD, et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021;372(6547):1224–9. https://pubmed.ncbi.nlm.nih.gov/33888596/
8289
Liao B, Zhao Y, Wang D, Zhang X, Hao X, Hu M. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. J Int Soc Sports Nutr. 2021;18(1):54. https://pubmed.ncbi.nlm.nih.gov/34238308/
8290
Kim M, Seol J, Sato T, Fukamizu Y, Sakurai T, Okura T. Effect of 12-week intake of nicotinamide mononucleotide on sleep quality, fatigue, and physical performance in older Japanese adults: a randomized, double-blind placebo-controlled study. Nutrients. 2022;14(4):755. https://pubmed.ncbi.nlm.nih.gov/35215405/
8291
Yoshino M, Yoshino J, Kayser BD, et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021;372(6547):1224–9. https://pubmed.ncbi.nlm.nih.gov/33888596/
8292
Abdellatif M, Baur JA. NAD+ metabolism and cardiometabolic health: the human evidence. Cardiovasc Res. 2021;117(9):e106–9. https://pubmed.ncbi.nlm.nih.gov/34320167/
8293
Yoshino M, Yoshino J, Kayser BD, et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021;372(6547):1224–9. https://pubmed.ncbi.nlm.nih.gov/33888596/
8294
Benson D. Christopher W. Shade, PhD: nicotinamide mononucleotide. Integr Med (Encinitas). 2019;18(6):42–4. https://pubmed.ncbi.nlm.nih.gov/32549856/
8295
Shade C. The science behind NMN – a stable, reliable NAD+ activator and anti-aging molecule. Integr Med (Encinitas). 2020;19(1):12–4. https://pubmed.ncbi.nlm.nih.gov/32549859/
8296
Mills KF, Yoshida