et al. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2016;68(1):92–125. https://pubmed.ncbi.nlm.nih.gov/27046161/
8175
Kent S, Haynes R, Hopewell JC, et al. Effects of vascular and nonvascular adverse events and of extended-release niacin with laropiprant on health and healthcare costs. Circ Cardiovasc Qual Outcomes. 2016;9(4):348–54. https://pubmed.ncbi.nlm.nih.gov/27407053/
8176
Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31(6):1078–90.e5. https://pubmed.ncbi.nlm.nih.gov/32386566/
8177
Zapata-Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD+ homeostasis in human health and disease. EMBO Mol Med. 2021;13(7):e13943. https://pubmed.ncbi.nlm.nih.gov/34041853/
8178
Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31(6):1078–90.e5. https://pubmed.ncbi.nlm.nih.gov/32386566/
8179
Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31(6):1078–90.e5. https://pubmed.ncbi.nlm.nih.gov/32386566/
8180
Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–71. https://pubmed.ncbi.nlm.nih.gov/23104101/
8181
Zhong O, Wang J, Tan Y, Lei X, Tang Z. Effects of NAD+ precursor supplementation on glucose and lipid metabolism in humans: a meta-analysis. Nutr Metab (Lond). 2022;19(1):20. https://pubmed.ncbi.nlm.nih.gov/35303905/
8182
Goldie C, Taylor AJ, Nguyen P, McCoy C, Zhao XQ, Preiss D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart. 2016;102(3):198–203. https://pubmed.ncbi.nlm.nih.gov/26370223/
8183
Meyer-Ficca M, Kirkland JB. Niacin. Adv Nutr. 2016;7(3):556–8. https://pubmed.ncbi.nlm.nih.gov/27184282/
8184
Williamson G, Holst B. Dietary reference intake (DRI) value for dietary polyphenols: are we heading in the right direction? Br J Nutr. 2008;99 Suppl 3:S55–8. https://pubmed.ncbi.nlm.nih.gov/18598589/
8185
Pitkin RM, Allen LH, Bailey LB, et al. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline: a report of the Standing Committee of the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins and Choline and Subcommittee on Upper Reference Levels of Nutrients. National Academies Press (US); 1998. https://pubmed.ncbi.nlm.nih.gov/23193625/
8186
Benyó Z, Gille A, Kero J, et al. GPR109A (PUMA-g/HM74A) mediates nicotinic acid-induced flushing. J Clin Invest. 2005;115(12):3634–40. https://pubmed.ncbi.nlm.nih.gov/16322797/
8187
DiPalma JR, Thayer WS. Use of niacin as a drug. Annu Rev Nutr. 1991;11:169–87. https://pubmed.ncbi.nlm.nih.gov/1832551/
8188
Fukushima T. Niacin metabolism and Parkinson’s disease. Environ Health Prev Med. 2005;10(1):3–8. https://pubmed.ncbi.nlm.nih.gov/21432157/
8189
Abdellatif M, Sedej S, Kroemer G. NAD+ metabolism in cardiac health, aging, and disease. Circulation. 2021;144(22):1795–817. https://pubmed.ncbi.nlm.nih.gov/34843394/
8190
Elvehjem CA, Madden RJ, Strong FM, Woolley DW. Relation of nicotinic acid and nicotinic acid amide to canine black tongue. J Am Chem Soc. 1937;59(9):1767–8. https://pubs.acs.org/doi/abs/10.1021/ja01288a509
8191
Yoshino J, Baur JA, Imai SI. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513–28. https://pubmed.ncbi.nlm.nih.gov/29249689/
8192
Giacalone S, Spigariolo CB, Bortoluzzi P, Nazzaro G. Oral nicotinamide: the role in skin cancer chemoprevention. Dermatol Ther. 2021;34(3):e14892. https://pubmed.ncbi.nlm.nih.gov/33595161/
8193
Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev. 2010;15(3):245–63. https://pubmed.ncbi.nlm.nih.gov/21155626/
8194
Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–71. https://pubmed.ncbi.nlm.nih.gov/23104101/
8195
Schmeisser K, Mansfeld J, Kuhlow D, et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol. 2013;9(11):693–700. https://pubmed.ncbi.nlm.nih.gov/24077178/
8196
Mitchell SJ, Bernier M, Aon MA, et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 2018;27(3):667–76.e4. https://pubmed.ncbi.nlm.nih.gov/29514072/
8197
Elliott RB, Pilcher CC, Stewart A, Fergusson D, McGregor MA. The use of nicotinamide in the prevention of type 1 diabetes. Ann N Y Acad Sci. 1993;696:333–41. https://pubmed.ncbi.nlm.nih.gov/8109840/
8198
Pozzilli P, Browne PD, Kolb H, et al. Meta-analysis of nicotinamide treatment in patients with recent-onset IDDM. Diabetes Care. 1996;19(12):1357–63. https://pubmed.ncbi.nlm.nih.gov/8941464/
8199
Connell NJ, Grevendonk L, Fealy CE, et al. NAD+-precursor supplementation with L-tryptophan, nicotinic acid, and nicotinamide does not affect mitochondrial function or skeletal muscle function in physically compromised older adults. J Nutr. 2021;151(10):2917–31. https://pubmed.ncbi.nlm.nih.gov/34191033/
8200
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci. 2019;20(4):974. https://pubmed.ncbi.nlm.nih.gov/30813414/
8201
Winter SL, Boyer JL. Hepatic toxicity from large doses of vitamin B3 (nicotinamide). N Engl J Med. 1973;289(22):1180–2. https://pubmed.ncbi.nlm.nih.gov/4271091/
8202
Reddi KK, Kodicek E. Metabolism of nicotinic acid and related compounds in man and rat. Biochem J. 1953;53(2):286–94. https://pubmed.ncbi.nlm.nih.gov/13032067/
8203
Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: a benefit/risk analysis. Exp Gerontol. 2020;132:110831. https://pubmed.ncbi.nlm.nih.gov/31917996/
8204
Willets JM, Lunec J, Williams AC, Griffiths HR. Neurotoxicity of nicotinamide derivatives: their role in the aetiology of Parkinson’s disease. Biochem Soc Trans. 1993;21 (Pt 3)(3):299S. https://pubmed.ncbi.nlm.nih.gov/8224447/
8205
Harrison IF, Powell NM, Dexter DT. The histone deacetylase inhibitor nicotinamide exacerbates neurodegeneration in the lactacystin rat model of Parkinson’s disease. J Neurochem. 2019;148(1):136–56. https://pubmed.ncbi.nlm.nih.gov/30269333/