«Нельзя считать, что они извлекут урок из обычной статистики. Давайте продемонстрируем им один-два типичных отдельных случая, чтобы повлиять на их Систему 1».
«Эту статистическую информацию не проигнорируют. Наоборот, она поспособствует созданию стереотипа».
17. Регрессия к среднему
Одно из самых впечатляющих озарений в моей карьере случилось, когда я преподавал инструкторам израильских ВВС психологию эффективного обучения. Я объяснял им важный принцип отработки навыков: поощрение за улучшение результатов работает эффективнее, чем наказание за ошибки. Это предположение много раз подтверждено исследованиями на голубях, крысах, других животных и людях.
Выслушав мои воодушевленные объяснения, один из самых опытных инструкторов в группе поднял руку и произнес в ответ собственную речь. Сначала он согласился, что, возможно, птицам поощрения и помогают, но отказался признавать, что похвала действует на курсантов. Он сказал так: «Я неоднократно хвалил курсантов за чистое исполнение фигуры высшего пилотажа. Во время следующей попытки исполнения той же фигуры они справляются хуже. А когда я ругаю их за плохое исполнение, то обычно в следующий раз у них выходит лучше. Так что, пожалуйста, не рассказывайте нам, что поощрение работает, а наказание – нет, потому что все как раз наоборот».
Внезапно, в радостный момент озарения, я по-новому увидел статистический принцип, который многие годы преподавал. Инструктор был прав – и в то же время совершенно неправ! Он проницательно заметил, что за случаями, когда он хвалил исполнение маневра, с большой вероятностью следовали разочарования, а за наказаниями – улучшения. Однако сделанный им вывод об эффективности поощрения и наказания оказался совершенно неверным. Инструктор наблюдал эффект регрессии к среднему, возникающий из-за случайных колебаний в качестве исполнения. Естественно, хвалили только тех, кто выполнял маневры намного лучше среднего. Но, вероятно, курсанту на этой попытке просто повезло, и, таким образом, следующая попытка была бы хуже независимо от того, похвалили его или нет. И наоборот: инструктор ругал курсанта, если тот выполнял задание необычно плохо, и потому сделал бы следующую попытку лучше, независимо от действий инструктора. Получилось, что неизбежным колебаниям случайного процесса дали каузальную интерпретацию.
Мне нужно было ответить, но лекцию по алгебре предсказаний вряд ли бы восприняли с энтузиазмом. Я взял мелок, нарисовал на полу цель, попросил каждого из присутствующих стать к ней спиной и, не глядя, бросить подряд две монеты. Мы измерили расстояния до цели и записали на доске оба результата для каждого испытуемого, а затем выстроили их по порядку, от худшей до лучшей первой попытки. Выяснилось, что большинство (но не все) из тех, у кого результаты первой попытки были лучшие, на второй попытке справлялись хуже, а у тех, кто плохо справился в первый раз, в следующий, как правило, получалось лучше. Я указал инструкторам на то, что написанное на доске совпадало с услышанным относительно последовательного выполнения фигур высшего пилотажа: за плохими результатами следовало улучшение, а за хорошими – ухудшение, без всякой похвалы или наказания.
В тот день обнаружилось, что летчики-инструкторы попали в ловушку зависимости от обстоятельств: ругая курсантов за плохие результаты, они, казалось, добивались улучшения, однако в действительности наказание не давало никакого эффекта. В этом они были не одиноки. В сущности, одна из особенностей человеческой природы заключается в неожиданной реакции при столкновении с жизнью. Мы хвалим других за добрые дела и ругаем за промахи, а с точки зрения статистики нас наказывают за хорошее и поощряют за плохое.
Талант и удача
Несколько лет назад Джон Брокман, редактор онлайн-журнала Edge, попросил ученых рассказать об их любимых уравнениях. Я предложил такие:
успех = талант + удача
большой успех = чуть больше таланта + много удачи
Неудивительная мысль о том, что удача часто помогает добиться успеха, представляет в неожиданном свете результаты первых двух дней турнира по гольфу. Чтобы не усложнять, предположим, что в оба дня средний показатель был пар 72. Мы сосредоточимся на игроке, который первый день прошел очень хорошо, завершив его со счетом 66. О чем говорит такой великолепный результат? Первый вывод: этот гольфист талантливее среднего участника турнира. Формула успеха предполагает возможность и другого вывода: у игрока был более удачный день, чем у других участников. Если вы согласны с тем, что и талант, и удача – часть успеха, то заключение о том, что игроку повезло, так же обоснованно, как и заключение о таланте.
Аналогично, рассматривая гольфиста, который набрал на 5 очков больше пара, есть причины сделать вывод, что он – довольно слабый игрок и у него был плохой день. Конечно, вы не знаете ни того ни другого наверняка. Вполне возможно, что игрок, набравший 77 очков, в действительности очень талантлив, но у него выдался совершенно ужасный день. Хотя следующие выводы из счета по окончании первого дня неокончательны, они вполне правдоподобны и чаще всего будут верными.
результат лучше среднего в 1-й день = талант выше среднего + удача в 1-й день
и
результат хуже среднего в 1-й день = талант меньше среднего + неудача в 1-й день
Теперь предположим, что вам известен результат гольфиста в первый день, и требуется предсказать его на второй. Вы ожидаете, что уровень таланта останется тем же, так что лучшее, что можно предположить для первого гольфиста, – «лучше среднего», а для второго – «хуже среднего». Удача, конечно, другое дело. Поскольку невозможно предсказать везение гольфистов во второй – да и в любой другой – день, лучший вариант: предположить, что оно будет средним, без особенностей. Это означает, что, в отсутствие другой информации, не стоит в своих догадках относительно второго дня повторять результаты игроков в первый день. Можно сказать лишь следующее: